Станок для электроэрозионной обработки металлов своими руками

Электроэрозионный станок: виды, схемы получения электрического разряда, оборудование своими руками

Для получения элементов со сложным профилем из труднообрабатываемых металлов используется электроэрозионный станок.

Его работа основана на воздействии разрядов электрического тока, которые создают в зоне обработки высокую температуру, из-за чего металл испаряется. Такой эффект именуется электрической эрозией.

Промышленность уже больше 50 лет использует станки, работающие по этому принципу.

Виды оборудования и методы обработки

Описать работу электроэрозионного станка можно так: взять заряженный конденсатор и поднести его электродами к металлической пластине.

Во время короткого замыкания происходит разряд конденсатора. Яркая вспышка сопровождается выходом энергии (высокой температуры).

В месте замыкания образуется углубление вследствие испарения некоторого количества металла от высокой температуры.

На технологическом оборудовании реализованы различные виды получения электрических разрядов. Среди основных схем выделяются:

  • электроискровая;
  • электроконтактная;
  • электроимпульсная;
  • анодно-механическая.

Реализуя одну из схем на практике, изготавливают станки. На принципе электрической эрозии были выпущены следующие станки в разных модификациях:

  • вырезной;
  • проволочный;
  • прошивной.

Электроискровой станок работает за счет искрового генератора. Генератор — это накопитель энергии, который дает электрический импульс. Для постоянной подачи импульсов организуется конденсаторная батарея.

Чтобы организовать электрическую цепь, катод подключают к исполнительному инструменту, а анод — к обрабатываемой детали.

Постоянное расстояние между электродом и деталью гарантирует однородность протекания процесса.

При вертикальном опускании электрода на деталь происходит прошивка металла и образование отверстия, форма которого задается формой электрода. Так работает электроэрозионный прошивной станок.

Для изготовления деталей из твердосплавных и труднообрабатываемых деталей используется электроэрозионный проволочный станок. В качестве электрода в нем выступает тонкая проволока.

При испарении металла на поверхности обрабатываемой детали образуются окислы, обладающие высокой температурой плавления. Для защиты от них процесс проводят в жидкой среде или масле.

Во время искрообразования жидкость начинает гореть, забирая кислород и другие газы из рабочей зоны.

Особенности самодельного устройства

Перед тем как приступить к изготовлению самодельного электроэрозионного станка, необходимо разобраться в его устройстве. К основным конструкционным элементам относятся:

  1. Стол для закрепления заготовки.
  2. Ванна.
  3. Исполнительный орган (электрод, клеммник для подключения провода, втулка, направляющая, диэлектрический корпус, штатив).
  4. Генератор.
  5. Каретка.
  6. Станковое основание.
  7. Штурвал для подачи инструмента.
  8. Кронштейн.
  9. Пластина вибрационная.
  10. Направляющая для стержня.
  11. Подставка.
  12. Оснастка.

Изготовление искрового генеротора

Для изготовления искрового генератора детали можно найти везде (в старых телевизорах, мониторах блоков питания и т. д. ). Принцип его работы таков:

  1. Диодный мост переменный ток преобразует в постоянный. Напряжение домашней сети составляет 220 В (можно использовать и 380 В).
  2. Лампа накаливания, входящая в схему, предназначена для ограничения тока во время короткого замыкания. Тем самым она защищает диодный мост от пробоя. Также она сигнализирует о зарядке конденсатора. Лампа берется соответствующего напряжения и мощностью не менее 120 Вт.
  3. Конденсатор должен быть рассчитан на подаваемое напряжение. Самым оптимальным будет напряжение в 400 В. Емкость у конденсатора должна быть не менее 1000 мкФ. Чтобы произвести прожиг на домашнем станке, достаточно 20 000 мкФ.
  4. После полной зарядки конденсатора лампа тухнет. Затем происходит его разрядка через электрод. Цепь разрывается.
  5. Повторяется цикл зарядки. Его скорость напрямую зависит от емкости конденсатора. При минимальных значениях на зарядку уходит чуть меньше одной секунды.
  6. Для защиты от перегрузки конструкцию оснащают автоматом 2−6 А.

Меры безопасности при работе

Так как организованная электроэрозия своими руками сопряжена с возможностью поражения электрическим током, к технике безопасности необходимо подойти со всей ответственностью.

Обрабатываемая деталь не должна быть заземлена. В противном случае произойдет ЧП — короткое замыкание в питающей сети.

Конденсаторы, рассчитанные на 400 В, могут привести к летальному исходу при их емкости всего в 1000 мкФ.

Источник: https://chebo.pro/stroyka-i-remont/rabota-samodelnogo-elektroerozionnogo-stanka-dlya-prozhiga.html

Технология электроэрозионной обработки

Электроэрозионная обработка металлов — технология, которая заключается в том, что между электродом-инструментом и материалом заготовки возникает горение электрической дуги, проходящее с потерей вещества между катодом и анодом.

Меняя среду, окружающую канал разряда, полярность заготовки и длительность импульсов, можно добиться контролируемого разрушения заданной поверхности детали либо формирования на ней других поверхностей.

Происходит электрическая эрозия одного или другого электрода.

Все металлы и сплавы являются хорошими проводниками, поэтому при помощи данной технологии стали доступны: электроэрозионная резка проволокой, сверление, упрочнение поверхности, тонкая шлифовка, прошивка, наращивание поверхности и копирование.

Виды электроэрозионной обработки

Электроэрозионную обработку (сокращенно ЭЭО) можно разделить на следующие виды:

  • электроискровая;
  • электроимпульсная;
  • электроконтактная;
  • высокочастотная.

При электроискровой обработке на анод-заготовку подается положительный заряд тока, а на другой электрод-инструмент — отрицательный, он является катодом. Среду, окружающую канал разряда между катодом и анодом, заполняют специальной диэлектрической жидкостью. Генератор импульсов регулирует продолжительность, а изменение емкости конденсатора управляется мощностью импульса.

Электроэрозионная резка проволокой — технология, при которой используются материалы, обладающие высокой эрозионной стойкостью.

Управляя величиной энергии импульса, можно добиться более высокой производительности или чистоты обрабатываемой поверхности.

Предварительная обработка происходит на жестких и средних режимах, а чистовая — на мягком и сверхмягком режиме, что позволяет добиться высокой точности заданных параметров воздействия. На видео показана технология:

Принцип электроимпульсной обработки заключается в том, что на обрабатываемую деталь подают отрицательный заряд тока с длительностью импульса свыше 0,001 с.

Деталь обрабатывается ионным потоком при температуре горения дуги более +5000°C, что гораздо выше температуры кипения металлов.

Скорость обработки детали возрастает многократно, но качество обрабатываемых поверхностей гораздо хуже, чем при электроискровом воздействии.

Реализация разных видов электроэрозии в станках универсального типа позволяет выполнять большой объем работ с разными исходными заданиями.

Специализированные и универсальные электроэрозионные станки позволяют изготавливать сита и сетки с размером ячеек от 0,15 до 2 мм и толщиной заготовки 2 мм с высоким уровнем производительности.

Производят прошивку отверстий, щелей и технологических полостей в металлах и сплавах толщиной до 100 мм, а также электроэрозионную шлифовку поверхностей.

Электроэрозионное упрочнение верхнего слоя металла (легирование) одним станком является важным направлением производства износостойких режущих инструментов и примером реализации электроимпульсной технологии вместо традиционной металлургии.

Электроконтактная обработка позволяет эффективно обрабатывать детали, выполненные из сверхтвердых сплавов, чугуна и титана.

С ее помощью можно производить шлифовку, прошивку фасонных отверстий, выполнять работы по чистовой резке и фрезеровке внутренних полостей.

Принцип работы станков

Электроэрозионная обработка материалов выполняется с использованием особого оборудования.

Рядом с помещенной в станок деталью устанавливается специализированный инструмент — электрод, который может иметь вид бесконечного проводника (проволочная электроэрозионная резка) или заданную форму для прошивки фасонных отверстий и окон. Обрабатываемая деталь и инструмент подключаются к источнику питания.

Комплекс деталь-инструмент помещают в ванну с жидкой диэлектрической рабочей средой или обеспечивают подачу жидкого диэлектрика в искровой рабочий промежуток между инструментом и деталью. При включении силовой части станка между ними появляется разность потенциалов, что приводит к возникновению направленного электрического разряда.

При пробивании слоя диэлектрической жидкости происходит электрическая эрозия материала. Продукты эрозии из межэлектродного промежутка удаляются принудительной подачей диэлектрической жидкости или устраняются при ее естественной циркуляции и оседают на дне ванны.

Существует разница между электроискровой технологией и режимом электроимпульсной обработки материала.

Электроимпульсный режим подразумевает наличие шагового генератора, который обеспечивает периодические разряды высокого напряжения импульсного типа. В период прохождения импульса происходит испарение и плавление материала проводника.

Меняя параметры продолжительности и мощности одного импульса, можно регулировать скорость и глубину обработки, а также полярность проводников.

Возможности оборудования

Применение электроэрозионного оборудования является более эффективным, чем механические традиционные виды обработки материалов. Широкие возможности прецизионной обработки сверхтвердых сплавов и высокая вариативность инструментов позволяют изготавливать детали на уровне качества и сложности, недоступном для традиционных механических станков.

Электроэрозионные станки позволяют производить обработку деталей с минимальными внутренними радиусами, изготавливать высокоточные штампы без дальнейшей чистовой подгонки. Исчезла необходимость проводить промежуточные операции по термообработке заготовки, оборудование позволяет осуществлять подгонку и притирку сопряженных деталей.

Электроэрозионная резка проволокой позволяет производить разделение металлов высокой прочности и сложных контуров эффективнее, чем механические станки. Скорость обработки, параллельность линий реза по всей глубине обрабатываемой заготовки и высокая точность линии кромок делают электроэрозионные установки незаменимыми в работе со сверхтвердыми материалами.

Станки с ЧПУ обеспечивают высокую точность, скорость и производительность. Электроискровое упрочнение дает возможность увеличить твердость обрабатываемой поверхности детали, тем самым позволяет существенно повысить ее износостойкость уже после формирования и обработки.

Электроэрозионная резка металла

Метод электроэрозионной резки металла (ЭЭР) позволяет выполнять обработку заготовки с более высокой скоростью, чем метод электроэрозионной контурной прошивки, т. к.

площадь обрабатываемой поверхности в единицу времени ограничена диаметром проволоки или единичного электрода инструмента.

Электроэрозионная резка не требует использования черновых и чистовых контуров-электродов, а сразу вырезает требуемый контур детали.

Электрод-проволока изготавливается из металлов и сплавов с высокой эрозионной стойкостью (латунь, вольфрам) и в процессе работы при постоянной протяжке через искровой промежуток имеет минимальный износ и постоянный диаметр. Это позволяет добиться сверхвысокой точности обработки изделия. Данный метод дает возможность проводить чистовую шлифовку деталей независимо от формы, размеров и шероховатости обрабатываемой поверхности.

Электроэрозионная резка позволяет изменять размеры металлической заготовки без нарушения ее физических свойств, что существенно увеличивает технологическую вариативность производства. Появляется возможность расширить спектр используемых металлов, материалов и сплавов в технологической линейке производства.

Электроэрозионная резка проволокой чаще всего применяется на крупных промышленных предприятиях для производства высокоточных серийных деталей, поскольку позволяет придать заготовке сложный контур и производить вырезку конических отверстий с углами до 30° при высоте обрабатываемой заготовки до 400 мм. Несомненным преимуществом данного вида обработки является тот факт, что после окончания резки деталь не требует дополнительной шлифовки, а это существенно влияет на себестоимость и скорость полного цикла изготовления.

По этой же схеме осуществляется резка заготовок с малой толщиной и различной степенью обработки поверхности металлов, т. к. воздействие электрического разряда при резке не деформирует обрабатываемую поверхность.

Электроэрозионная резка нашла широкое применение в производстве ювелирных изделий.

Технология ЭЭО позволяет также поместить нужную информацию или рисунок на тонкую заготовку без ее деформации, при этом возможно нанесение не только на металл, но и на другие виды токопроводящих материалов.

Самодельные станки

Изготовить станки для электроэрозионной обработки своими руками — трудоемкая задача. Главной сложностью станет обеспечение точности действий и получение достаточной мощности искрового разряда.

Читайте также:  Как выбрать настольный токарный станок по дереву для дома

Чаще всего самодельные станки — это установки для маркировки или маломощные устройства, с помощью которых выполняется электроэрозионная резка проволокой.

Встречаются и прошивные станки для обработки заготовок из различных металлов небольшой толщины.

Добиться при работе на самодельных электроэрозионных станках такой же точности и производительности, как на установках, произведенных промышленным путем, — задача недостижимая. Для самодельного станка прежде всего нужен искровой генератор. Это самый сложный элемент, который придется сделать самостоятельно.

Чтобы аккумулировать большое количество энергии за короткий отрезок времени и выдать ее с фиксированной длительностью импульса, необходимы знания и умения далеко не рядового уровня.

Потребуется найти достаточное количество конденсаторов большой емкости; молибденовую, вольфрамовую или латунную проволоку; обеспечить систему протяжки через искровой промежуток с нужным натяжением и скоростью; синхронизировать ее подачу и намотку на барабаны; обеспечить приток диэлектрической жидкости (подойдет дистиллированная вода или масло), ее сбор и рециркуляцию.

Как результат, скорее всего, получившийся станок утратит все преимущества ЭЭО-технологии, и ленточная пила, хороший электролобзик или гравер справится с работой гораздо лучше и быстрее.

Преимущества данного вида обработки

Электроэрозионная обработка обеспечивает множество преимуществ.

Она позволяет производить сложную обработку любых токопроводящих заготовок, включая твердые кристаллы, высокопрочные сплавы, чугуны и различные металлы, не нарушая при этом физико-химических свойств материалов и игнорируя их твердость, хрупкость и вязкость.

Процесс исключает силовое воздействие на поверхность, что позволяет обрабатывать хрупкие и тонкостенные детали. Исключается использование инструментов и абразивов, превосходящих по твердости обрабатываемый материал.

Существует возможность проводить работы с большой деталью без помещения ее в специальный станок. Достаточно локализовать место работы на поверхности детали. Допускается использование одного и того же электрода-инструмента как для черновой, так и для чистовой обработки детали.

Данная технология дала возможность проводить электроэрозионную резку заготовки одновременно по двум координатам с большой точностью и высокой чистотой поверхности. Она позволяет обрабатывать внутренние технологические полости (при изготовлении резьбы) в тугоплавких материалах высокой прочности.

Электроискровой метод нанесения покрытий позволяет произвести упрочнение поверхности детали на существенную глубину. Метод электроэрозионной маркировки дает возможность нанести изображения на любые токопроводящие поверхности заготовки, в том числе имеющие малую толщину. Процесс выполняется без деформации детали, т. к. происходит пробой на фиксированную глубину материала.

Источник: https://alsver.ru/rezka/elektroerozionnaya-obrabotka-metallov

Бизнес-идея: большой доход на маленьких деталях

Практически все стартапы начинаются с идеи, которая потом обрастает конкретным наполнением. «Бизнесмену, который задумал что-то производить, будь то товарная позиция или услуга, приходится решать комплекс взаимосвязанных задач.

Подобрать оборудование, арендовать помещение, нанять специалистов, определится с рынком сбыта, – говорит эксперт сообщества стартапов, к. э. н., доцент Игорь Малюгин. – Любая ошибка может стоить дорого, особенно если взят кредит под личное имущество.

Иногда разумнее приобрести универсальное оборудование и ориентироваться на него».

Иными словами, купив, например, универсальный металлообрабатывающий станок, можно определиться с кругом изделий и деталей, которые можно изготовить на нем, а также со спектром идей для бизнеса своими руками, которые он способен помочь реализовать. И только после этого искать конечного потребителя.

«Возможно, для кого-то такая позиция покажется спорной, – считает Уильямс Фикс, экономист из Чикаго, советник ведущих венчурных фондов США. – Однако упор на универсальность, например, электроэрозионных станков является хорошей подушкой безопасности.

Сегодня, к слову, можно производить автозапчасти, а завтра – детали к стрелковому оружию, то есть то, что пользуется сиюминутным спросом».

Очевидно, что г-н Фикс привел этот вид оборудования для наглядности, но мы все-таки расскажем, как с помощью таких станков можно заработать, взяв за основу реальный электроэрозионный проволочно-вырезной станок АРТА.

Немного о технологии электроэрозионной обработки

Первый в мире проволочно-вырезной станок создал в 1951 году советский ученый Борис Ставицкий, опираясь на труды своего учителя Бориса Лазаренко, того самого, который изобрел электроискровой метод.

Позднее термин «электроискровой» заменили на «электроэрозионный». Этот метод совершил самую настоящую машиностроительную революцию.

Позднее, с появлением микропроцессоров и датчиков положения, появилась возможность производить уникальные по сложности детали.

«Во-первых, исчезла потребность в дорогостоящих режущих инструментах или абразивах, которые должны быть прочнее, чем материал обработки, – поясняет технолог Игорь Малышев из Фрязино.

– Во-вторых, можно резать заготовку сразу по нескольким координатам, причем с шириной разреза в десятые, а то и в сотые доли мм.

В-третьих, отсутствует механическая нагрузка при обработке, следовательно, можно обрабатывать тонкостенные материалы».

Благодаря этому, у машиностроителей появились уникальные возможности. «Доступность автомобилей возросла после того, как появились эти станки, – делится опытом Джон Миронофф из Детройта. – Теперь проектировщик не ломает голову, как можно сделать его деталь. Мы можем вырезать любой профиль, даже с переменным углом, лишь бы материал обладал электрической проводимостью».

Как друзья сделали подводный пистолет

Поскольку в качестве примера взяли электроэрозионные проволочно-вырезные станки АРТА разработки и производства Научно-Промышленной Корпорации «Дельта-Тест», мы нашли инженера, который с помощью этого станка сделал пневматический пистолет, причем для подводной охоты. «Тема подводного оружия меня всегда интересовала, – делится опытом Яков Дельман. – Вот я и решил сам изготовить подводный пистолет для стрельбы маленькими гарпунами. Детали помог сделать друг, в мастерской которого имелся станок АРТА».

Непринципиальные детали сделали из полистирола методом литья на экструдере, причем формы для заливки тоже сделали на АРТА.

«Чертежи форм и основных деталей: шептало, втулки, спускового крючка, плунжера, рычага, рукоятки и других – мы перевели в электронный чертеж в формате AutoCAD, – дополняет рассказ Армен Карданов. – При этом чертеж плунжера из-за сложности прочертили с коррекцией на величину прорезаемого паза.

Для изготовления этих деталей использовали латунную проволоку ARTACUT. Это было очень интересно. Что касается оборудования, то мы использовали станок погружного типа АРТА 123».

Конечно, не все детали пневматического пистолета были изготовлены в мастерской, в частности углекислотный баллончик, трубки ствола и кожуха, резиновые уплотнители были закуплены в специализированных магазинах.

Также гарпун из нержавеющей стали 1Х18Н10Т пришлось заказывать сварщику. Однако расходы на разовое производство опытной партии не превысили четырех тысяч за пневматический пистолет. «На рынке такие оружейные дейвасы стоят по десять тысяч рублей, – подытоживает Дельман.

– Так что если бы мы занялись этим бизнесом, наверняка бы разбогатели».

Будущее малого бизнеса за небольшими мастерскими и заводиками

Игорь Малюгин, комментируя опыт Дельмана и Карданова, отметил: «В нашей стране очень много талантливых людей, которые способны проектировать сложные технические девайсы.

Причем наличие доступного электроэрозионного проволочно-вырезного станка АРТА позволяет им делать поистине уникальные механизмы.

Думается, что в ближайшие годы мы станем свидетелями появления небольших заводов и мастерских, где наряду с экструдерами будут применяться и эти станки».

На Западе, главным образом в США, такие стартапы пользуются большой популярностью. «Насосы, велосипеды, домашние лифты, механизмы для открывания и закрывания дверей и многое другое вначале изготавливались именно малым бизнесом, – говорит Джон Миронофф.

– Потом, после успешных презентаций, ими уже интересовались крупные компании, покупая стартапы за десятки миллионов долларов. Я считаю, что успеху способствовали многокоординатные электроэрозионные станки с ЧПУ. Из-за универсальности изготавливаемых деталей».

Бесспорно, опыт США рано или поздно будет востребован в России, благо, что и у нас есть свои производители такого оборудования, например, та же Научно-Промышленная Корпорация «Дельта-Тест».

Александр Ситников, специально для Equipnet.ru

Источник: https://www.equipnet.ru/org-biz/proizvodstvennyiy-biznes/proizvodstvennyiy-biznes_212.html

Электроэрозионная обработка металла: принцип работы и технология обработки — СибНовСтрой

Главная страница » Электроэрозионная обработка


Электроэрозионная обработка

Электроэрозионная обработка (ЭЭО) заключается в изменении формы, размеров, шероховатости и свойств поверхности электропроводной заготовки под действием электрических разрядов между заготовкой и электродом-инструментом.

ЭЭО относится к электрофизическим методам обработки. Ее технология придумана супружеской парой российских ученых Лазаренко еще в 50-х годах двадцатого века. Но нынешнее использование она обрела только в семидесятых.

ЭЭО дает возможность изготавливать предметы, которые невозможно получить с помощью традиционного механического метода обработки металлов. Можно создать глубокие пазы, делать изделия с малыми внутренними радиусами, выполнять точную штамповую оснастку и многие другие виды работ.
 

Суть процесса электроэрозионной обработки

Два электрода, одним из которых является электрод-инструмент (1), а вторым само металлическое изделие (2) помещаются в жидкость с низкой диэлектрической проницаемостью и соединяются с генератором электрических импульсов. Электроды имеют разную полярность.

При приближении электрода-инструмента к электроду-заготовке напряженность возрастает, и как только электроды сблизятся до определенной малой величины (5…100 мкм) произойдет пробой диэлектрической жидкости. Жидкость нагреется до высоких температур и образуется газовый пузырь из паров жидкости.

Возникший разряд электрического тока протекает как раз уже в газовой среде пузыря, под действием этого разряда и происходит нагревание и расплавление участка заготовки, Расплавленный маленький участок материала охлаждается и застывает в виде «шариков» диаметром 0,005…0,01 мм в диэлектрической жидкости, опускается на дно ванны или удаляется потоком жидкости, а на обрабатываемой поверхности образуется лунка. В виду локального нагрева электродов до высоких температур, ЭЭО называют обработкой, основанной на тепловом действии электрического тока.

Такие разряды происходят периодически, импульсно. Частота импульсов и их длительность играют важную роль на достижение качества обрабатываемой детали. Например, чем меньше длительность импульса, тем меньше шероховатость поверхности.

Движение инструмента вызывает дальнейшие разряды один за другим, при этом разряд всегда происходит между ближайшими точками электродов. Даже на гладких поверхностях имеются микронеровности, и при сближении электродов всегда найдутся две близкорасположенные друг к другу точки электродов, между ними и происходит разряд.

Процесс ЭЭО основан на электрической эрозии, т.е. разрушении верхнего слоя поверхности детали от воздействия электрических разрядов. Когда-то этот процесс считался только как отрицательный, но с применением его в качестве размерной обработки материалов, он приобрел и положительный эффект.

Процесс электроэрозионной обработки происходит до тех пор, пока не будет выбран весь материал или не будут достигнуты нужные размеры детали. Заготовка постепенно будет принимать форму инструмента.

В качестве диэлектрической жидкости выступают ликвидные смеси, такие как: керосин, спиртовые растворы, маслянистые жидкости, вода и т.д.

В представленной схеме заготовка имеет положительный полюс и она является анодом, а инструмент отрицательный полюс, он является катодом.

Повышение эрозии одного электрода относительно другого электрода и есть полярный эффект.

Читайте также:  Классификация, технические характеристики и правила эксплуатации дисковых пил

Прямой полярностью называют такое подключение полюсов к электродам, которое вызывает большую эрозию обрабатываемого электрода-заготовки. Соответственно, когда эрозия электрода-инструмента больше, чем электрода-заготовки подключение называют обратной полярностью.

Учитывая это, электрод-инструмент необходимо изготавливать из материалов стойких к электрической эрозии, таких как латунь, медь, графит, вольфрам и т.д.
 

Виды электроэрозионной обработки

Выделяют 4 вида электроэрозионной обработки:

— Электроискровая

— Электроимпульсная

— Анодно-механическая

— Электроконтактная

Данные виды ЭЭО используются для проведения размерной обработки изделия, а также два из них электроискровая и электроимпульсная обработки могут использоваться еще и для упрочнения или покрытия поверхности.

По методам подвода энергии ЭЭО разделяют на три группы:

— Через контакт. К этой группе относится электромеханический способ.

— Через канал разряда. Электроискровой и электроимпульсный способы.

— Комбинированный контактно-дуговой. Электроконтактный и Анодно-механический способ.

Также выделяют и следующие виды ЭЭО:

— Электроэрозионная комбинированная. Ее суть заключается в том, что она выполняется в одно время с остальными видами работы над металлом.

— Комбинированная электро-химическая. Осуществляется одновременно с электрическим и химическим расщеплением структуры материала детали в электролите.

— Электроэрозионная абразивная. Суть лежит в разрушении металлической заготовки с помощью абразивной обработки.

Электроискровая и электроимпульсная обработки отличаются друг от друга устройством генератора импульсов, формой импульса, полярностью электродов и т.д. А электроконтактная, анодно-механическая обработки отличаются родом тока и рабочей средой.

Но суть всех этих видов остается одной, а именно — удаление металла в результате термического действия электрического тока.
 

Технологии электроэрозионной обработки

С помощью ЭЭО проводятся операции:

• Прошивание. Электрод-инструмент углубляется в электрод-заготовку и образует отверстие постоянного сечения.

Прошивание отверстий является одной из распространенных операций. Методом ЭЭО возможно обрабатывать отверстия длиной до 20 диаметров, а используя трубчатый электрод-инструмент и до 40 диаметров. При вращении электрода-инструмента или обрабатываемой поверхности, или одновременно и инструмента, и заготовки, глубина отверстия может быть увеличена.

Также прошиванием обрабатывают узкие щели, пазы, окна, карманы и другие элементы, которые механическими методами обработать невозможно.

• Копирование. ЭЭО обработка, при которой форма детали повторяет форму инструмента. Таким методом обрабатывают объемные поверхности.

• Отрезание/вырезание.

• Сложноконтурная проволочная вырезка. Вырезку контурной детали можно сделать и путем прошивания, но для этого нужен электрод-инструмент, имеющий форму детали, что не отвечает требования экономичности.

• Шлифование. Применяют для чистовой обработки труднообрабатываемых материалов и твердых сплавов.

• Доводка.

• Маркирование. Нанесение букв, цифр, логотипов высокого качества и не вызывает внутренние напряжения, деформации деталей, что имеет место при ударном маркировании.

• Упрочнение. Придание поверхности детали особых свойств. Этот процесс называют электроэрозионным легированием, его сущность заключается в перенесении материала электрода на заготовку. Данный процесс создает износоустойчивый упрочненный поверхностный слой детали.

• Другие виды операций.

Невозможно не подчеркнуть то, что электроэрозионная обработка металлов дает возможность получить поверхности самых разных конфигураций и геометрических форм при минимальных трудозатратах.

Преимущества и недостатки электроэрозионной обработки

Такая обработка в ряде случаев является одним из самых экономически выгодных способов обработки изделий. Детали, изготовленные по такой технологии, отличаются высоким уровнем прочности и точностью исполнения. Преимуществами данного метода являются:

• Глубокая обработка заготовки. Глубина прошиваемого отверстия может достигать 40 диаметров.

• Подходит для задач, с которыми не справляются методы механической обработки, например, обработки закрытых полостей с фигурной поверхностью дна, малыми внутренними радиусами и т.д. Механическая обработки ограничена радиусом фрезы, в том время, как ЭЭО позволят получать радиус порядка 0,1мм. Изделия могут иметь совершенно различную форму.

• Обеспечивается высокая точность резки до 0,001 мм, и низкая шероховатость поверхности.

• Бесшумность.

• Экономное использование ресурсов. Малый износ инструментов и т.д.

• Применим для материалов любой плотности, таких как труднообрабатываемые материалы, твердые сплавы и другие очень прочные материалы.

• Не нуждается в промежуточных операциях, ЭЭО позволяет получать полностью готовую деталь.

• Однородная поверхность детали.

• Снижает риски деформации тонкостенных деталей, которая наблюдается при механической обработке.

Стоит отметить и то, что ЭЭО обладает также и рядом недостатков, а именно:

• Не высокая производительность.

• Высокое энергопотребление.

• ЭЭО применима только для электропроводящих материалов.

Не смотря на недостатки, электроэрозионная обработка обладает большим потенциалом, и широко применяется в промышленности. Например, для обработки глубоких полостей с малыми внутренними радиусами, узких пазов и многих других элементов применяется только электроэрозионная обработка.

Достоинства электроэрозионной обработки хорошо видны в ходе создания техоснастки и сопутствующих элементов: матрицы, пунсона, лекального шаблона, прессовой формы и других деталей из труднообрабатываемых материалов и твердых сплавов.

Оборудование для электроэрозионной обработки

Этим устройством принято считать электроэрозионный станок. Он поможет создать фасонные полости и профильные пазы на изделиях из твердых материалов.

С этим связано и развитие оборудования совершенно в различных направлениях, например, обеспечения возможности обработки больших габаритных деталей, обработки под углом, параллельной обработки нескольких деталей (пакетом) и других возможностей, а также в направлении снижения энергопотребления, повышения производительности и т.д.
Автоматизация таких станков дает значительный эффект, так применение станков с ЧПУ, позволяет снизить трудоемкость обработки изделий.

Электроэрозионные станки обычно просты в использовании и обеспечивают их быструю переналадку.
 

Проектирование электроэрозионной обработки

Технологическая подготовка производства изделий на электроэрозионных станках связана с множеством задач, в том числе и с проектированием электродов-инструментов. Такие инструменты обычно имеют сложные поверхности и предназначены для обработки штампов и других деталей.

В случае проволочно-вырезной электроэрозионной обработки необходима подготовка соответствующих данных (чертежей, управляющих программ) для работы станка. Для этого используются специальные модули «Электроэрозионная обработка», которые уже стандартно входят в состав различных CAD/CAM-систем.

Источник: http://sibnovostroy.ru/obrabotka/elektroerozionnaya-obrabotka-metalla-printsip-raboty-i-tehnologiya-obrabotki.html

Электроэрозионный станок: область применения и принцип работы

Бизнес 16 июня 2018

Если раньше электроэрозионный станок был редкостью, то сегодня таким оборудованием уже никого не удивить. Под электроэрозией понимают разрушение межатомных сил взаимодействия в металлах под воздействием электрического заряда. Своим появлением электроэрозионный станок обязан разработкам советских ученых Б. Р. Лазаренко и Н. И.

Лазаренко. Такое оборудование является универсальным. Оно позволяет обрабатывать и придавать форму любым маркам металлов и сплавов. Причем твердость обрабатываемого материала не имеет никакого значения. Возможность обрабатывать любые материалы является одним из основных преимуществ электроэрозионной обработки перед традиционной обработкой резанием.

Принцип работы электроэрозионного станка

При ознакомлении с принципом работы подобного оборудования у многих возникает ассоциация с электродуговой сваркой. И это вполне логично. Ведь для протекания эрозионных процессов необходимо получить электрический разряд. С этой целью между электродами создается разница потенциалов. Одним из электродов при этом служит обрабатываемое изделие, а вторым – электрод станка.

Когда электрод приближается к заготовке на критическое расстояние, то происходит так называемый пробой. Иными словами, электроны совершают работу выхода и устремляются по воздуху к катоду (обрабатываемой заготовке).

Электроны, соударяясь с поверхностью обрабатываемого изделия, в считаные доли секунды разогревают его до невероятно больших температур (10 000 и более градусов по Цельсию). Температура плавления даже самых тугоплавких материалов в разы меньше. Таким образом, слой металла моментально испаряется, образуются углубления по форме рабочего инструмента электроэрозионного станка.

Зачем нужен электролит?

Для усиления эффекта анод и катод помещаются в диэлектрический раствор. В качестве такового может быть использован керосин. Однако он может в любой момент воспламениться.

Поэтому предпочтение следует отдавать специальным минеральным маслам. Масло тоже может гореть, однако температуры вспышки значительно выше, чем у керосина.

Кроме того, керосин источает вредные для производственного персонала пары.

Диэлектрическая жидкость сильно нагревается и образует так называемую паровую рубашку (мелкие воздушные пузырьки). Именно по воздуху, заключенному в диэлектрическую жидкость, и протекает ток (направленное движение электронов). Это позволяет концентрировать поток электронов и усиливать полезный эффект.

Видео по теме

Влияние обработки на прочностные характеристики обработанной поверхности

После обработки химический состав и концентрация различных элементов в приповерхностном слое заготовки несколько изменяются. Например, может повыситься концентрация углерода.

Кроме того, поверхностный слой может легироваться элементами, которые содержались в расплавленном электроде. Подбором электродов можно осуществлять легирование поверхности такими элементами, как алюминий, цинк, хром, никель, вольфрам и другие.

В зависимости от условий последующей эксплуатации детали, это может играть как положительную, так и отрицательную роль.

Достоинства электроэрозионной технологии и оборудования

Одним из основных достоинств данной технологии является очень высокая точность обработки изделий. Это обусловило широкое применение электроэрозионной технологии в таких отраслях, как военная промышленность, точное машиностроение, а также в производстве медицинских изделий ответственного назначения.

Дефицит производственных площадей – одна из главных проблем современных машиностроительных компаний. Электроэрозионные станки, как правило, довольно компактны и позволяют частично разрешить эту проблему. Таким образом, компактность оборудования также является неоспоримым преимуществом станков данного типа.

Устройство электроэрозионного станка

Существует множество типов станков. Однако вышеописанные принципы работы справедливы абсолютно для каждого из них, будь то электроэрозионный прошивной станок или станок для электроискровой обработки.

Может показаться, что данное технологическое оборудование является невероятно сложным и дорогостоящим. Дорогостоящим, возможно. Особенно если станок произведет именитым брендом.

Однако сам принцип работы оборудования довольно прост. В Сети появилось множество видеороликов, в которых умельцы воспроизводят эти процессы.

Причем они собирают электроэрозионные станки своими руками в условиях домашних любительских мастерских.

Сам станок, как и любой другой станок для обработки металлов и других материалов, включает станину (основание), ванну для электролита, шпиндельную головку, пульт управления для оператора (это может быть и полноценная система числового программного управления), различную автоматику. Это основные компоненты. Отдельные станки могут дополнительно оснащаться системой фильтрации электролита и другими устройствами.

Источник: fb.ru

Источник: http://monateka.com/article/279387/

Малогабаритный электроискровой станок

Малогабаритный электроискровой станок

Простая электроискровая установка (рис. 1) позволяет легко и быстро обрабатывать небольшие детали из электропроводящих материалов любой твердости. С ее помощью можно получать сквозные отверстия любой формы, извлекать сломавшийся резьбовой инструмент, прорезать тонкие щели, гравировать, затачивать инструмент и мн.др.

Сущность процесса электроискровой обработки заключается в разрушении материала заготовки под действием импульсного электрического разряда.

Благодаря малой площади рабочей поверхности инструмента в месте разряда выделяется большое количество тепла, которое расплавляет вещество обрабатываемой детали.

Процесс обработки наиболее эффективно идет в жидкости (например, в керосине), омывающей место контакта вибрирующего инструмента и детали и уносящей с собой продукты эрозии. Инструментом служат латунные стержни (электроды), повторяющие форму предполагаемого отверстия.

Рис. 1. Малогабаритная электроискровая установка: 1 — обрабатываемая деталь; 2 — инструмент; 3 — электромагнитный вибратор; 4 — зажимное устройство; 5 — ванночка. 

Читайте также:  Фрезерные станки: виды, устройство и принцип работы

Принципиальная электрическая схема установки изображена на рис. 2. Работает установка следующим образом. Разрядный конденсатор С1 соединен своим плюсовым выводом с обрабатываемой деталью 1. Минус его подключен к инструменту 2.

Электромагнитный вибратор 3 сообщает инструменту непрерывные колебания. Этим обеспечивается постоянное искрение в месте контакта и предотвращается возможность сварки инструмента с деталью.

Обрабатываемая деталь 1 закреплена в зажимном устройстве 4, которое имеет надежный электрический контакт с ванночкой 5. 

Силовой трансформатор собран на сердечнике Ш32 из обычной трансформаторной стали. Толщина набора 40 мм. Первичная обмотка содержит 1100 витков провода ПЭВ 0,41 с отводом от 650-го витка. Вторичная обмотка имеет 200 витков провода ПЭВ-2 диаметром 1,25 мм.

Между первичной и вторичной обмотками помещена экранирующая обмотка III , состоящая из одного слоя, намотанного проводом ПЭВ 0,18. Емкость разрядного конденсатора 400 мкФ (два конденсатора типа КЭ-2 200 х 50 В). Реостат R1 рассчитан на ток 3—5 А.

Этот реостат намотан нихромовым проводом диаметром 0,5—0,6 мм на сопротивлении ВС-2.

Рис. 2. Принципиальная электрическая схема электроискровой установки. 

Диоды Д1—Д4 типа Д304, можно использовать и другие типы диодов. На выходе выпрямителя напряжение порядка 24—30 В. Можно использовать источники питания и с более низким напряжением, но с большим током, чтобы мощность, потребляемая цепью заряда, была не менее 50—60 Вт.

 При работе установки происходит непрерывное искрение. Для уменьшения помех, создаваемых установкой, в цепь ее питания необходимо включить простейший фильтр радиопомех.

Прилагается фотоинструкция.

Эрозионный станок.pdf (542 кБ)

Источник: https://eurosamodelki.ru/katalog-samodelok/auto-samodelki/elektroiskrovoi-stanok-dlja-garaga

Электроэрозионный станок своими руками

www.softelectro.ru    

2009              

Видео работы станка   Скачать   Объем: 9 276 kb

Предисловие автора

Данная статья написана исключительно для описания электроэрозионного метода обработки металлов. Описание конструкции в целом и любой его части не может быть пособием по созданию электроэрозионного станка. Электрическая схема и устройства станка нарушает все правила электробезопасности и представляет реальную угрозу вашей жизни, электросети и оборудованию.

Автор не несет никакой ответственности за ущерб нанесенный Вашему здоровью и имуществу если Вы попытаетесь реализовать описанную здесь конструкцию. Любая часть этой статьи не может быть напечатана или передаваться кому- бы то ни было без этого предупреждения. Автор сделал этот станок для одной конкретной задачи при ограничении времени и деталей.

После решения этой задачи станок был разобран, так как он абсолютно не безопасен.

§1 Вступление

Создать этот станок меня заставила проблема с удалением обломанной высокоуглеродистой биты в картере заднего моста моей машины. Отвинчивая крышку редуктора заднего моста, я оборвал головку болта М8.

В отсутствии экстрактора попытался использовать углеродистую биту в виде звездочки, которую забил в отверстие просверленное в остатке болта. При попытки открутить остатки болта бита обломилась. Высверлить обломок биты твердосплавными сверлами не удавалось.

Пришлось подумать, как это сделать, не снимая моста.

§2 Электроэрозия

Принцип электроэрозионной обработки металлов основан на испарении металла искровым разрядом.

Если Вы видели короткое замыкание конденсатора на металлической пластине, то помните, что в месте разряда остаётся лунка. Металл в этом месте испаряется от высокой температуры искрового разряда.

Электроэрозионные станки более 50 лет применяются в промышленности для обработки высокопрочных сплавов.

§3 Искровой генератор

Главное в станке это искровой генератор, а точнее конденсатор (накопитель энергии).

Нам необходимо накопить электрическую энергию за длительный интервал времени, а потом выбросить всю накопленную энергию за очень короткий промежуток времени.

По аналогичному принципу работают лазеры, чем короче будет промежуток времени выброса энергии, тем выше будет плотность тока в искровом канале, следовательно — будет выше температура.

Рис1.Принципиальная схема искрового генератора.

Работа искрового генератора:

С помощью диодного моста выпрямляем промышленное напряжение 220 в. Лампа Н1 служит для ограничения тока короткого замыкания и защиты диодного моста. Вместо лампы можно использовать другую нагрузку. Чем больше нагрузка (Вт), тем быстрее зарядятся конденсаторы.

Но, помните, что ток не должен превысить возможности диодного моста и подводящих проводов. После того, как конденсаторы зарядятся лампа Н1 погаснет, и можно подносить электрод к обрабатываемой детали. В момент касания электрода о деталь проскочит искра, в результате чего конденсаторы разрядятся и лампа Н1 загорится.

После размыкания электрода конденсаторы вновь начнут заряжаться. Время заряда конденсаторов в этой схеме 0,5..1,0 сек. Постоянный ток в схеме при замкнутом электроде составляет примерно 0,45А, но в момент разряда он достигает нескольких тысяч ампер. Поэтому провода от конденсаторов к электродам должны быть толстыми (6.

10 мм2) и обязательно медными. Поднося каждую секунду электрод к детали вы получите искровой генератор с частотой генерации в 1Гц.

§4 Особенности работы с искровым генератором

Обрабатываемая деталь должна быть токопроводящая, т.е. это должен быть металл или сплав металлов. Прочность сплавов значения не имеет. Электрод должен быть медным или латунным. Отверстие, получаемое в детали, будет повторять форму электрода. Если электрод будет треугольным, то и отверстие в детали будет треугольное.

При работе электрод будет укорачиваться за счет испарения примерно с той же скоростью, с какой будет углубляться отверстие. Скорость углубления для этой схемы составляет примерно 0,025мм за удар. То есть за 40 ударов глубина отверстия будет около 1мм (для диаметра отверстия 2..3мм).

При увеличении диаметра отверстия скорость углубления будет уменьшаться. После каждого удара образовавшееся отверстие будет покрываться изнутри окислами металлов и постепенно искра начнёт уменьшаться, пока совсем не прекратиться. Поэтому второй частью станка должна быть система удаления окислов.

Для этого необходимо подавать в отверстие керосин или масло. Удаления окислов происходит за счет взрыва капли масла в искровой дуге.

Масло испаряется за счет высокой температуры и вступает в реакцию с кислородом, который находится в воздухе, в результате чего в отверстии происходить щелчок (взрыв) который выбрасывает окислы металла наружу. Я использовал баллончик с силиконовой смазкой.

Достаточно после каждого третьего щелчка брызгать в отверстие силиконовую смазку и искра не будет пропадать. Только будьте внимательны, если налить много силикона он может загореться. Подачу электрода нужно обязательно фиксировать направляющей, так чтобы он бил всё время в одну точку и двигался параллельно оси отверстия.

§5 Реализация станка

Детали для искрового генератора не дефицитны, их можно купить в специализированном магазине или взять на ближайшей помойке. Конденсаторы Вы найдете в любом выброшенном телевизоре или мониторе или в блоке питания от компьютера. Там же найдете и диодный мост.

Напряжения указанное на конденсаторе должно быть не менее 320 В. Емкость конденсатора может быть любой, сумма всех ёмкостей конденсаторов должна быть не менее 1000 мкФ (все конденсаторы соединяются параллельно). Чем больше будет ёмкость, тем мощнее будет удар.

Все это надо собрать в прочном изоляционном корпусе. Как я уже говорил для монтажа надо использовать толстые медные провода (6..10мм2), которые должны идти от конденсаторов к электродам. Провода от конденсаторов к диодным мостам и к лампе могут быть 0,5мм2.

Лампу установить в фарфоровый патрон и прочно закрепите его на подставке, чтобы лампа не упала и не разбилась, желательно здесь же установить автомат защиты на 2..6 А. с его помощью можно будет включать схему. Для электродов нужно сделать надежные зажимы.

Для минусового провода большой крокодил или винтовой зажим. На плюсовом проводе надо сделать зажим для медного электрода и штатив с направляющей для электрода.

Рис.2 Устройство станка

    Описание:

  • электрод;
  • винт зажима электрода;
  • винт зажима плюсового провода;
  • направляющая втулка;
  • фторопластовый корпус;
  • отверстие для подачи масла;
  • штатив;

Корпус 6 вытачивается из фторопласта. В качестве направляющей втулки 4 для электрода 1 использован заземляющий штырь 3-х фазной евророзетки.

Он был просверлен вдоль оси для установки в него электрода и сделано два отверстия с резьбой для закрепления электрода и провода. По мере испарения электрода его подают вперед, ослабив винт 2.

Вся конструкция крепится на надёжный штатив, который позволяет менять высоту. В отверстие 6 вставляется трубочка с маслом. Направляющая втулка 4 как шприц подает масло вдоль электрода.

Рис.3 Фотография станка

Для привода электрода был использован отечественный пускатель с катушкой на 220в, шток которого имеет ход 10 мм (он определяет максимальную глубину отверстия). Обмотка пускателя подключается параллельно лампе Н1, поэтому пока конденсаторы заряжаются (лампа горит) шток пускателя втянут.

После зарядки конденсаторов лампа гаснет, так как ток в системе перестает течь и шток отпускается. При отпускании штока он касается детали, происходит искровой разряд, лампа Н1 загорается и шток снова втягивается. Цикл повторяется снова, с частотой примерно 1Гц. Если надо увеличить частоту, то нужно увеличить мощность лампы Н1.

В качестве детали на фотографии использован напильник.

Рис.4 Фотографии сверла с отверстием, проделанным этим станком.

§6 Меры безопасности при работе

    При работе со станком нужно учесть:

  • Во первых, из-за отсутствия нужного трансформатора схема искрового генератора была сделана без гальванической развязки с промышленной сетью 220в. Если деталь окажется, каким-то образом заземлена, то это приведет к короткому замыканию сети.

  • Во-вторых, из-за отсутствия нужного трансформатора используется опасное для жизни человека напряжение. Удар искровым разрядом в 220в 1000 мкФ будет летален.
  • В-третьих, к детали не должны быть подключены электронные приборы даже через корпус.

    Например, если полностью не снять электронные блоки с машины и не отсоединить аккумулятор, то можно легко вывести их из строя.

  • В-четвертых, керосин или масло подаваемые в отверстие могут легко загореться, что приведет к пожару.

Поэтому я настоятельно не рекомендую повторять эту конструкцию.

    Минимум что в ней надо теоретически изменить:

  • Поставить развязывающий трансформатор 220в/12в Р=200 ВА
  • Лампу Н1 12в 120Вт
  • Увеличит емкость батареи до 20 000 мкФ ( можно испол. конденсаторы на 35В)

Причем разработать и изготавливать конструкцию должен специалист. аттестованный на такие работы.

Станок с ЧПУ Часть 1

Электроэрозионный станок Подробнее evro-mechanics.ru

Источник: http://note2auto.ru/page/jelektrojerozionnyj-stanok-svoimi-rukami

Ссылка на основную публикацию