Требования и конструктивные особенности к станкам cnc при самостоятельном изготовлении

Классификация и конструктивные особенности станков с чпу

Технологическое оборудование машиностроительных произ­водств

По технологическим признакам и возможностям станки с ЧПУ (рис. 76) классифицируются практически так же, как и универсальные станки (см. табл. 1), на базе которых изготовляется большинство станков с ЧПУ.

Токарные станки с ЧПУ предназначены для обработки наружных и внутренних поверхностей заготовок деталей типа тел вращения, а также для нарезания наружной и внутренней резьбы.

Фрезерные станки с ЧПУ предназначенные для обработки загото­вок плоских и пространственных корпусных деталей, осуществляют следующие операции: плоское, ступенчатое и контурное фрезерование с нескольких сторон и под различными углами, сверление, растачива­ние, развертывание, нарезание резьбы и др. Сверлильно-расточные станки с ЧПУ, предназначенные для обработки отверстий, выполняют сверление, рассверливание, зенкерование, растачивание, развертыва­ние, обтачивание торцов, фрезерование, нарезание резьбы и др.

Шлифовальные станки с ЧПУ предназначены для шлифования наружных, внутренних и торцевых поверхностей деталей, имеющих прямолинейную и криволинейную формы образующей.

Многоцелевые станки с ЧПУ (обрабатывающие центры) предназ-

Рис. 76. Станки с ЧПУ:/ — токарно-винторезный, 2 — токарно-револьверный, 3 — лоботокарний, 4 — токарно-карусель — ный, 5, 6 — горизонтально-расточный, 7— консольный горизонтально-фрезерный, 8 — консольный вертикально-фрезерный, 9 — продольно-фрезерный вертикальный, 10— продольно-фрезерный, //— продольно-фрезерный с подвижным порталом, 12— одностоечный продольно-строгальный

Начены для комплексной обработки заготовок деталей за одну уста­новку, выполняют практически все операции обработки резанием.

Электроэрозионные станки с ЧПУ предназначены для вырезания методом электроэрозии деталей сложного контура из токопроводящих материалов, обработка которых другими способами затруднена или невозможна. Обработка осуществляется непрерывно перемещающим­ся электродом-проволокой (из латуни, меди, молибдена, вольфрама) в среде керосина или вводы с антикоррозионными присадками.

В зависимости от типа управления станки с ЧПУ оснащаются различными СЧПУ: позиционными, контурными или комбинируемы­ми (позиционно-контурными).

Различают станки низкого, среднего и высокого уровней автома­тизации. В станках с низким уровнем автоматизации программируются только перемещения исполнительных органов, управляемых от УЧПУ.

Для таких станков характерно небольшое число технологических ко­манд, поступающих от УЧПУ к исполнительным органам станка.

Эти команды хранятся в кодированном виде в УЧПУ, не требуют перера­ботки и передаются на исполнительные органы непосредственно или через силовые реле устройства электроавтоматики станка.

В станках со средним уровнем автоматизации используется большое число технологических команд.

Эти команды требуют переработки, которая осуществляется, как правило, устройством электроавтоматики, размещенным в специальном шкафу и состоящим из релейных или электронных схем.

Переработка команд заключается в их дешифровке, при которой код команды, поступающей на УЧПУ, преобразуется в сигналы, управляющие исполнительными органами станка.

Помимо дешифровки устройство электроавтоматики управляет различными автоматическими циклами (смена инструмента, сверление и т. д.).

В станках с высоким уровнем автоматизации переработку техноло­гических команд осуществляет УЧПУ.

По способу смены инструмента станки с ЧПУ подразделяются на следующие типы: с ручной сменой инструмента и его ручным закреп­лением; с ручной сменой инструмента и его механическим закрепле­нием; с автоматической сменой инструмента в револьверной головке; с автоматической сменой (манипулятором) инструмента, хранящегося в инструментальном магазине.

Показатели, характеризующие станки с ЧПУ, следующие: 1) класс точности: Н; П; В; А; С; 2) вид системы ЧПУ: Ф1; Ф2; ФЗ; Ф4; 3) выполняемые технологические операции; 4) основные параметры: наибольший диаметр изделия, устанавливаемого над станиной; наи­больший диаметр обработки при установке изделия над станиной (для патронных станков); наибольший диаметр обработки при установке изделия над суппортом (для центровых и патронных станков); наи­больший диаметр отрабатываемого прутка (для прутковых станков); ширина рабочей поверхности стола или его диаметр, наибольший условный диаметр сверления; диаметр шпинделя и др.; 5) величина перемещений исполнительных органов станка: суппорта по двум ко­ординатам; выдвижение шпинделя; перемещение стола по двум коор­динатам и т. д.; 6) дискретность СЧПУ; 7) точность и повторяемость позиционирования по управляемым координатам; 8) главный привод: вид и модель; мощность; частота вращения и ее регулирование (сту­пенчатое или бесступенчатое); числа рабочих скоростей и автоматиче­
ски переключаемых скоростей и т. д.; 9) привод подач: вид и модель; мощность, пределы и числа рабочих подач; скорость быстрого перемещения и т. д.; 10) число инструментов в резцедержателе, револь­верной головке или в инструментальном магазине; 11) способ смены инструмента;

12) число управляемых координат и число одновременно управляемых координат;

13) обозначение координатных осей и на­правление движения исполнительных ор­ганов; 14) тип и модель УЧПУ; 5) вид интерполяции: линейная; линейно-кру­говая и т. д.; 16) вид программоносителя и код программирования; 17) габариты и масса станка.

Система координат и направление движений исполнительных органов станков с ЧПУ. Работа станка с ЧПУ и программирование процесса обработки связаны с системами координат. Для станков с ЧПУ на­правление перемещений и их символика стандартизованы. Координат­ные оси расположены параллельно направляющим станка.

Единой системой координат для всех станков с ЧПУ является правая система (рис. 77), в которой координатные оси X, Y и Z (сплошные линии) указывают положительное направление перемещений инструмента от­носительно неподвижных частей станка.

Координатные оси X, Y* и Z (пунктирные линии) направлены противоположно осям X, Y и Z, указывают положительные направления перемещений заготовки отно­сительно неподвижных частей станка.

Ось X всегда расположена горизонтально, ось Z совмещается с осью вращения инструмента (на токарных станках — с осью вращения шпинделя). Положительными всегда являются такие движения, при которых инструмент и заготовка взаимно удаляются.

Круговые перемещения инструмента (например, поворот оси шпинделя фрезерного станка) обозначают буквами А (вокруг оси X), В (вокруг оси Y) и С (вокруг оси Z). Круговые перемещения заготовки (например, управляемые по программе пово­рота стола на расточном станке) обозначаются соответственно А', В С.

Рис. 77. Стандартная система координат в станках с ЧПУ

Для программирования обработки необходимо, чтобы направление перемещения каждого исполнительного органа станка обозначалось определенной буквой, которая указывает в УП на тот исполнительный орган, который необходимо включить.

Клавиатура перфоратора не имеет букв со штрихами; поэтому для записи информации на перфо­ленту при обозначении направлений перемещений двух исполнитель­ных органов вдоль одной оси используют так называемые вторичные
оси: U(вместо X), V(вместо Y), ^(вместо Z).

При перемещении трех исполнительных органов вдоль одного направления используют тре­тичные оси: Р, Qm R. Примеры расположения и буквенных обозначе­ний координатных осей на различных станках с ЧПУ представлены на рис. 76.

Способы и начало отсчета координат. При настройке станка с ЧПУ каждый ИО устанавливается в некоторое исходное положение, из которого он перемещается при обработке заготовки на строго опреде­ленные расстояния, поэтому инструмент проходит через заданные опорные точки траектории.

Конструктивные особенности станков с ЧПУ. Станки с ЧПУ должны обеспечивать высокую точность и скорость отработки перемещений заданных УП, а также сохранять эту точность в заданных пределах при длительной эксплуатации.

Конструкция станков с ЧПУ, как правило, обеспечивает совмещение различных видов обработки, автоматизацию загрузки заготовок и выгрузки деталей, автоматическое или дистанци­онное управление сменой инструмента, возможность встройки в об­щую автоматическую систему управления. Высокая точность обработки определяется точностью изготовления и жесткостью станка.

В конст­рукциях станков с ЧПУ используют короткие кинематические цепи, что повышает статическую и динамическую жесткость станков. Для всех исполнительных органов применяют автоматические приводы с минимально возможным числом механических передач. Эти приводы должны иметь высокое быстродействие.

Точность станков с ЧПУ повышается в результате устранения зазоров передаточных механизмов приводов, уменьшения потерь на трение в направляющих и механиз­мах, повышения виброустойчивости, снижения тепловых деформаций.

Узлы, входящие в состав станков с ЧПУ, подразделяются на следующие основные группы: 1) базовые (станина, стойки, колонны, поперечины), определяющие относительное расположение остальных узлов; 2) узлы, несущие заготовку и определяющие характер ее движе­ния в процессе обработки (стол, передняя и задняя бабки, ползун); 3) узлы, несущие инструмент и определяющие его положение относи­тельно заготовки (суппорт, револьверная головка, бабка инструмен­тального шпинделя); 4) приводы СЧПУ.

В конструкциях современных станков применяют следующие уни­фицированные узлы, использование которых снижает стоимость изго­товления, эксплуатации и ремонта станков; автоматические коробки скоростей; комплексные электроприводы с асинхронными электро­двигателями и электродвигателями постоянного тока; механические вариаторы; электромагнитные и тормозные муфты; беззазорные редук­торы; передачи винт-гайка качения; гидростатические передачи; гид­ропанели; инструментальные головки и блоки; резцедержатели; револьверные головки; системы подачи СОЖ; УЧПУ и др.

Органы управления станков с ЧПУ выполняют в виде электриче-
а)

Рис. 78. Изменения выходного сигнала l/ъих абсолютного (а) и циклического (б) ДОС (/ — перемещение ИО станка)

Ских кнопок, переключателей, тумблеров. Обычно станок с ЧПУ оснащен двумя или тремя пультами управления; один размещен на УЧПУ, второй (оперативный) — вблизи исполнительных органов стан­ка, третий, предназначенный для включения станка и его основных систем, может быть расположен вдали от станка.

Приводы подач станков с ЧПУ содержат зубчато-реечные, зубча­то-червячные и шариковинтовые передачи с автоматической выборкой зазоров.

ДОС как устройство обратной связи (выдающее информацию о величине фактического перемещения, положения и скорости ИО станка) входит в систему путевого контроля, включенную в измери­тельную схему и схему формирования выходного сигнала. Эти схемы являются устройствами согласования ДОС с основными узлами УЧПУ. ДОС подразделяют на абсолютные и циклические (рис. 78). В отече­ственных станках с ЧПУ в качестве циклических ДОС применяют преобразователи, измеряющие

Линейные перемещения и по — ^

Строенные на основе сельси­нов.

Сельсин — вращающийся трансформатор с воздушным зазором, у которого при враще­нии ротора происходит изме­нение величины напряжения. В сельсине поворот ротора от­носительно статора преобразу­ется в сдвиг фаз выходного и опорного напряжения.

79. Схемы установки ДОС на сельсинах на станках:
А — схема привода исполнительного механизма стан­ка; б — схема воздействия исполнительного органа станка на датчик обратной связи; 1 — силовая переда­ча винт-гайка, 2 — ИО станка, 3 — ДОС, 4 — передача рейка-шестерня, 5 — направляющая

Преобразователи на основе сельсинов являются датчиками обратной связи по углу пово­рота, поэтому их стыкуют не­посредственно с вращающи­мися элементами приводов по­дач станков или связывают с поступательно перемещающи­
мися ИО станка через передачу «зубчатая рейка-шестерня». Стыковка ДОС с ИО станка представлена на рис. 79. К данному типу ДОС относятся вращающиеся трансформаторы, развернутые сельсины, ин — дуктосины.

К вспомогательным механизмам относятся устройства смены инс­трумента, уборки стружки, смазывания, зажимные приспособления, загрузочные устройства и т. д. Для уборки стружки используют винто­вые конвейеры, магнитные сепараторы и т. д.

Для сокращения потерь времени при загрузке применяют приспособления, позволяющие од­новременно устанавливать заготовку и снимать деталь во время обра­ботки другой заготовки (столы с двумя позициями, маятниковые столы и др.).

К устройствам автоматической смены инструмента относятся магазины, автооператоры, револьверные головки.

Производим и продаем электроприводы ЭТУ, ЭПУ для двигателей постоянного тока, тел./email +38 050 4571330 / rashid@msd.com.ua Назначение, классификация и конструктивные особенности свер­лильных и расточных станков с ЧПУ. Эти станки предназначены …

Производим и продаем электроприводы ЭТУ, ЭПУ для двигателей постоянного тока, тел./email +38 050 4571330 / rashid@msd.com.ua Развитие производства во многом определяется техническим про­грессом машиностроения. Увеличение выпуска продукции машино­строения осуществляется за …

Многоцелевые станки (МС) — это станки, оснащенные УЧПУ и устройством автоматической смены инструментов, предназначенные для комплексной обработки за одну установку корпусных деталей и деталей типа тел вращения. МС выпускают с …

Источник: https://msd.com.ua/texnologicheskoe-oborudovanie-mashinostroitelnyx-proiz-vodstv/klassifikaciya-i-konstruktivnye-osobennosti-stankov-s-chpu/

Особенности технических решений оборудования с ЧПУ CNC и особенности выполнения на них технологических процессов (стр. 1 из 4)

Федеральное агентство по образованию РФ

Государственное образовательное учреждение высшего профессионального образования

Пермский государственный технический университет

Аэрокосмический факультет

Кафедра «Технология, конструирование и автоматизация в

специальном машиностроении»

РЕФЕРАТ

на тему

«Особенности технических решений оборудования с ЧПУ CNC и особенности выполнения на них технологических процессов»

по курсу «Технологические процессы в машиностроении»

Пермь, 2009

Содержание

Введение

Общие сведения

Функциональные составляющие ЧПУ

Конструктивные особенности станков с ЧПУ

Виды станков с ЧПУ

Заключение

Список литературы

Введение

Появление в 50-х годах ХХ века станков с ЧПУ было обусловлено необходимостью повышения производительности труда (при одновременном обеспечение стабильного качества) на производствах с массовым и крупносерийным выпуском продукции, т.к.

продолжение использования человека в качестве основного элемента системы управления станком стало сдерживать рост производительности оборудования.

Последующий полувековой опыт применения станков с ЧПУ не только подтвердил правильность исходных идей, но и существенно дополнил и продолжает дополнять многочисленные преимущества этих станков по сравнению со станками с ручным управлением или механическими полуавтоматами и автоматами. Современное машиностроительное производство немыслимо без максимально широкого использования станков, оборудования, а так же обрабатывающих центров с ЧПУ.

Читайте также:  Обзор сверлильного станка 2с132: компоненты, характеристики, особенности

станок числовое программное управление

Общие сведения

Станок с ЧПУ (числовое программное управление) — оборудование, выполняющее различные технологические операции по заданной программе. Помимо металлорежущих (например, фрезерные или токарные), существует оборудование для резки листовых заготовок, для обработки давлением.

Станки с ЧПУ являются сложными технологическими комплексами, включающими непосредственно станок и устройство ЧПУ, построенное часто с применением мини-ЭВМ, которые должны быть органически взаимосвязаны с учетом их особенностей и возможностей.

Числовое программное управление означает компьютеризованную систему управления, считывающую инструкции специализированного языка программирования (например, G-код) и управляющую приводами метало- дерево- и пластмасообрабатывающих станков и станочной оснасткой.

Интерпретатор системы ЧПУ производит перевод программы из входного языка в команды управления главным приводом, приводами подач, контроллерами управления узлов станка (включить/выключить охлаждение, например).

Для определения необходимой траекторию движения рабочего органа в целом (инструмента/заготовки) в соответствии с управляющей программой (УП) используется интерполятор, рассчитывающий положение промежуточных точек траектории по заданным в программе конечным.

Аббревиатура ЧПУ соответствует двум англоязычным NC и CNC, отражающим эволюцию развития систем управления оборудованием. Системы типа NC (см.

NC) предусматривали использование жестко заданных схем управления обработкой, задание программы с помощью штекеров или переключателей, хранение программ на внешних носителях, таких, как магнитные ленты, перфорированные бумажные ленты.

Каких-либо устройств оперативного хранения данных, управляющих микропроцессоров не предусматривалось. Системы ЧПУ, описываемые как CNC, основаны на микропроцессоре с оперативной памятью, с операционной системой, приводы управляются собственными микроконтроллерами.

Программа для оборудования с ЧПУ может быть загружена с внешних носителей, например, дискет или с обычных или специализированных флеш-накопителей. Помимо этого, современное оборудование подключается к заводским сетям связи.

Основной язык программирования ЧПУ описан документом ISO 6983 Международного комитета по стандартам.

В отдельных случаях, например, системы управления гравировальными станками, язык управления принципиально отличается от стандарта.

Для простых задач, например, раскрой плоских заготовок, система ЧПУ в качестве входной информации может использовать текстовый файл в формате обмена данными, например DXF или HP-GL.

Преимущества станков с ЧПУ:

· повышается производительность труда в 3—4 раза;

· повышается точность обработки, сократить брак, объем пригоночных работ при сборке;

· сокращается количество технологической оснастки;

· сокращение числа контрольных операций, число контролеров и контрольных инструментов и приспособлений;

· сокращается длительность производственного цикла обработки деталей и машин;

· повышается гибкость и мобильность оборудования;

· использование многостаночного обслуживания оборудования;

Вместе с тем станки с ЧПУ имеют:

· более высокую стоимость;

· требуют дополнительных затрат на подготовку управляющих программ (УП);

· удорожается обслуживание и ремонт оборудования.

Системы ЧПУ можно классифицировать по различным признакам.

В зависимости от способа управления исполнительным органом различают:

· позиционные

· контурные

· универсальные системы.

При позиционном управлении инструмент последовательно обходит ряд точек — позиций.

Требуется высокая точность позиционирования, а траектория перемещения инструмента из одной позиции в другую не имеет существенного значения — это холостое перемещение.

При контурном управлении инструмент движется без остановок, и обработка совершается во время движения. Все погрешности отработки траектории переносятся на деталь.

В зависимости от наличия обратной связи системы управления могут быть:

· замкнутыми

· закрытыми

· разомкнутыми

· открытыми.

В зависимости от способа отсчета перемещения различают системы управления с абсолютным и относительным отсчетом. В первом случае отсчет ведется относительно начала системы координат: x1, y1, x2, y2 и т. д., во втором случае задаются приращения: Δx1, Δy1, Δx2, Δy2 и т. д.

В зависимости от чисел управляемых координат различают одно-, двух-, трех- четырех — пятикоординатные системы управления. Из них какое-то число координат управляется одновременно (параллельно), а какое-то — последовательно.

В зависимости от элементной базы и уровня использования ЭВМ различают системы первого, второго, третьего поколения. Устройства ЧПУ первого поколения не имели встроенного интерполятора. Программа, записанная на перфоленту при помощи вынесенного интерполятора, переписывалась на магнитную ленту, которую использовали для управления станком.

На магнитную ленту трудно записать большое число технологических команд. Это ограничивает технологические возможности системы. Устройства ЧПУ второго поколения имеют встроенный интерполятор и управляются от перфоленты. Для подготовки перфоленты используется ЭВМ. Устройства ЧПУ третьего поколения (системы CNC) имеют встроенный микропроцессор.

Это позволяет:

· вместо аппаратного обеспечения функций системы управления использовать программное обеспечение;

· реализовать более гибкий процесс программирования (ввод программы с клавиатуры, подготовка программы при изготовлении первой детали);

· использовать дисплей и режим диалога;

· использовать как программоноситель не только перфоленту, но и компакт-кассеты, диски с памятью и др.;

· значительно расширить функции системы управления:

· реализовать типовые диагностические программы,

· организовать поиск неисправностей,

· осуществить оптимизацию технологических процессов,

· коррекцию параметров,

· оперативное планирование,

· информирование оператора о состоянии системы,

· давать рекомендации оператору о необходимых действиях для поддержания работоспособности и т. д.

Функциональные составляющие ЧПУ

Для того, что бы сделать из обычного станка станок с ЧПУ необходимо внедрить определенные компоненты в его структуру. Недостаточно просто подсоединить станок к компьютеру, что бы он работал по программе — необходимо модернизировать механическую и электронную «начинку» станка. Условно СЧПУ (Систему числового программного обеспечения) можно разделить на три подсистемы:

· подсистема управления

· подсистема приводов

· подсистема обратной связи

Подсистема управления – является центральной частью всей СЧПУ. С одной стороны она читает управляющую программу и отдает команды различным агрегатам станка на выполнение тех или иных операций. С другой стороны взаимодействует с человеком, позволяя оператору контролировать процесс обработки.

Сердцем подсистемы является контроллер (процессор) который отвечает за управление всеми электронными составляющими станка. Система управления может быть как закрытой, так и открытой. Закрытые системы имеют собственные алгоритмы и циклы работы. Закрытые системы нельзя изменять. Открытые системы все больше и больше внедряются в производство т.к.

оператор имеет полный доступ ко всем алгоритмам и циклам работы, и позволяют изменять программу обработки.

Подсистема приводов – система двигателей и передач, обеспечивающая выполнение команд подсистем управления.

Подсистема обратной связи призвана обеспечивать подсистему управления информацией о текущем состоянии станка и обрабатываемой детали с помощью различных датчиков.

Рис. 1. Подсистема обратной связи.

Конструктивные особенности станков с ЧПУ

Станки с ЧПУ имеют расширенные технологические возможности при сохранении высокой надежности работы.

Конструкция станков с ЧПУ должна, как правило, обеспечивать совмещение различных видов обработки (точение-фрезерование, фрезерование-шлифование), удобство загрузки заготовок, выгрузки деталей (что особенно важно при использовании промышленных роботов), автоматическое или дистанционное управление сменой инструмента и т.д.

Источник: http://MirZnanii.com/a/192261/osobennosti-tekhnicheskikh-resheniy-oborudovaniya-s-chpu-cnc-i-osobennosti-vypolneniya-na-nikh-tekhnologicheskikh-protsessov

2. Конструктивные особенности станков с ЧПУ

Станки с ЧПУ имеют расширенные технологические возможности при сохранении высокой надежности работы.

Конструкция станков с ЧПУ должна, как правило, обеспечивать совмещение различных видов обработки (точение-фрезерование, фрезерование-шлифование), удобство загрузки заготовок, выгрузки деталей (что особенно важно при использовании промышленных роботов), автоматическое или дистанционное управление сменой инструмента и т.д.

Повышение точности обработки достигается высокой точностью изготовления и жесткостью станка, превышающей жесткость обычного станка того же назначения, для чего производят сокращение длины его кинематических цепей: применяют автономные приводы, по возможности сокращают число механических передач. Приводы станков с ЧПУ должны также обеспечивать высокое быстродействие.

Повышению точности способствует и устранение зазоров в передаточных механизмах приводов подач, снижение потерь на трение в направляющих и других механизмах, повышение виброустойчивости, снижение тепловых деформаций, применение в станках датчиков обратной связи.

Для уменьшения тепловых деформаций необходимо обеспечить равномерный температурный режим в механизмах станка, чему, например, способствует предварительный разогрев станка и его гидросистемы.

Температурную погрешность станка можно также уменьшить, вводя коррекцию в привод подач от сигналов датчиков температур.

Базовые детали (станины, колонны, салазки). Столы, например, конструируют коробчатой формы с продольными и поперечными ребрами. Базовые детали изготавливают литыми или сварными. Наметилась тенденция выполнять такие детали из полимерного бетона или синтетического гранита, что в еще большей степени повышает жесткость и виброустойчивость станка.

Направляющие станков с ЧПУ имеют высокую износостойкость и малую силу трения, что позволяет снизить мощность следящего привода, увеличить точность перемещений, уменьшить рассогласование в следящей системе.

Направляющие скольжения станины и суппорта для уменьшения коэффициента трения создают в виде пары скольжения «сталь (или высококачественный чугун)-пластиковое покрытие (фторопласт и др.)»

Направляющие качения имеют высокую долговечность, характеризуются небольшим трением, причем коэффициент трения практически не зависит от скорости движения. В качестве тел качения используют ролики. Предварительный натяг повышает жесткость направляющих в 2…3 раза, для создания натяга используют регулирующие устройства.

Приводы и преобразователи для станков с ЧПУ.

В связи с развитием микропроцессорной техники применяют преобразователи для приводов подачи и главного движения с полным микропроцессорным управлением — цифровые приводы представляют собой электродвигатели, работающие на постоянном или переменном токе. Конструктивно преобразователи частоты, сервоприводы и устройства главного пуска и реверса являются отдельными электронными блоками управления.

Привод подачи для станков с ЧПУ. В качестве привода используют двигатели, представляющие собой управляемые от цифровых преобразователей синхронные или асинхронные машины.

Бесколлекторные синхронные (вентильные) двигатели для станков с ЧПУ изготавливают с постоянным магнитом на основе редкоземельных элементов и оснащают датчиками обратной связи и тормозами. Ассинхронные двигатели применяют реже, чем синхронные.

Привод движения подач характеризуется минимально возможными зазорами, малым временем разгона и торможения, небольшими силами трения, уменьшенным нагревом элементов привода, большим диапазоном регулирования.

Обеспечение этих характеристик возможно благодаря применению шариковых и гидростатических винтовых передач, направляющих качения и гидростатических направляющих, беззазорных редукторов с короткими кинематическими цепями и т.д.

Приводами главного движения для станков с ЧПУ обычно являются двигатели переменного тока — для больших мощностей и постоянного тока — для малых мощностей.

В качестве приводов служат трехфазные четырехполосные асинхронные двигатели, воспринимающие большие перегрузки и работающие при наличии в воздухе металлической пыли, стружки, масла и т.д. Поэтому в их конструкции предусмотрен внешний вентилятор.

В двигатель встраивают различные датчики, например датчик положения шпинделя, что необходимо для ориентации или обеспечения независимой координаты.

Преобразователи частоты для управления асинхронными двигателями имеют диапазон регулирования до 250. Преобразователи представляют собой электронные устройства , построенные на базе микропроцессорной техники.

Программирование и параметрирование их работы осуществляются от встроенных программаторов с цифровым или графическим дисплеем. Оптимизация управления достигается автоматически после введения параметров электродвигателя.

В математическом обеспечении заложена возможность настройки привода и пуск его в эксплуатацию.

Шпиндели станков с ЧПУ выполняет точными, жесткими, с повышенной износостойкостью шеек, посадочных и базирующих поверхностей. Конструкция шпинделя значительно усложняется из-за встроенных в него устройств автоматического режима и зажима инструмента, датчиков при адаптивном управлении и автоматической диагностике.

Опоры шпинделя должны обеспечить точность шпинделя в течение длительного времени в переменных условиях работы, повышенную жесткость, небольшие температурные деформации. Точность вращения шпинделя обеспечивается прежде всего высокой точностью изготовления подшипников.

Наиболее часто в опорах шпинделей применяют подшипники качения. Для уменьшения влияния зазоров и повышения жесткости опор обычно устанавливают подшипники с предварительным натягом или увеличивают число тел качения.

Подшипники скольжения в оправках шпинделей применяют реже и только при наличии устройств с периодическим (ручным) или автоматическим регулированием зазора в осевом или радиальном направлении.

В прецизионных станках применяют аэростатические подшипники, в которых между шейкой вала и поверхностью подшипника находится сжатый воздух, благодаря этому снижается износ и нагрев подшипника, повышается точность вращения и т.п.

Привод позиционирования (т.е. перемещение рабочего органа станка в требуемую позицию согласно программе) должен иметь высокую жесткость и обеспечивать плавность перемещения при малых скоростях, большую скорость вспомогательных перемещений рабочих органов (до 10 м/мин и более).

Вспомогательные механизмы станков с ЧПУ включают в себя устройства смены инструмента, уборки стружки, систему смазывания, зажимные приспособления, загрузочные устройства и т.д. Эта группа механизмов в станках с ЧПУ значительно отличается от аналогических механизмов, используемых в обычных универсальных станках.

Например, в результате повышения производительности станков с ЧПУ произошло резкое увеличение количества сходящей стружки в единицу времени, а отсюда возникла необходимость создания специальных устройств для отвода стружки.

Для сокращения потерь времени при загрузке применяют приспособления, позволяющие одновременно устанавливать заготовку и снимать деталь вовремя обработки другой заготовки.

Читайте также:  Как сделать листогибочные вальцы своими руками

Устройства автоматической смены инструмента (магазины, автооператоры, револьверные головки) должны обеспечивать минимальные затраты времени на смену инструмента, высокую надежность в работе, стабильность положения инструмента, т.е. постоянство размера вылета и положения оси при повторных сменах инструмента, имеют необходимую вместимость магазина или револьверные головки.

Револьверная головка-это наиболее простое устройство смены инструмента: установку и зажим инструмента осуществляют вручную. В рабочей позиции один из шпинделей приводится во вращение от главного привода станка. Револьверные головки устанавливают на токарные, сверлильные, фрезерные, многоцелевые станки с ЧПУ; в головке закрепляют от 4 до 12 инструментов.

Источник: http://prod.bobrodobro.ru/74960

Конструктивные особенности станков с ЧПУ

Станки с ЧПУ имеют расширенные технологические возможности при сохранении высокой надежности работы.

Конструкция станков с ЧПУ должна, как правило, обеспечивать совмещение различных видов обработки (точение-фрезерование, фрезерование-шлифование), удобство загрузки заготовок, выгрузки деталей (что особенно важно при использовании промышленных роботов), автоматическое или дистанционное управление сменой инструмента и т.д.

Повышение точности обработки достигается высокой точностью изготовления и жесткостью станка, превышающей жесткость обычного станка того же назначения, для чего производят сокращение длины его кинематических цепей: применяют автономные приводы, по возможности сокращают число механических передач. Приводы станков с ЧПУ должны также обеспечивать высокое быстродействие.

Повышению точности способствует и устранение зазоров в передаточных механизмах приводов подач, снижение потерь на трение в направляющих и других механизмах, повышение виброустойчивости, снижение тепловых деформаций, применение в станках датчиков обратной связи.

Для уменьшения тепловых деформаций необходимо обеспечить равномерный температурный режим в механизмах станка, чему, например, способствует предварительный разогрев станка и его гидросистемы.

Температурную погрешность станка можно также уменьшить, вводя коррекцию в привод подач от сигналов датчиков температур.

Базовые детали (станины, колонны, салазки). Столы, например, конструируют коробчатой формы с продольными и поперечными ребрами. Базовые детали изготавливают литыми или сварными. Наметилась тенденция выполнять такие детали из полимерного бетона или синтетического гранита, что в еще большей степени повышает жесткость и виброустойчивость станка.

Направляющие станков с ЧПУ имеют высокую износостойкость и малую силу трения, что позволяет снизить мощность следящего привода, увеличить точность перемещений, уменьшить рассогласование в следящей системе.

Направляющие скольжения станины и суппорта для уменьшения коэффициента трения создают в виде пары скольжения «сталь (или высококачественный чугун)-пластиковое покрытие (фторопласт и др.)»

Направляющие качения имеют высокую долговечность, характеризуются небольшим трением, причем коэффициент трения практически не зависит от скорости движения. В качестве тел качения используют ролики. Предварительный натяг повышает жесткость направляющих в 2…3 раза, для создания натяга используют регулирующие устройства.

Приводы и преобразователи для станков с ЧПУ.

В связи с развитием микропроцессорной техники применяют преобразователи для приводов подачи и главного движения с полным микропроцессорным управлением — цифровые приводы представляют собой электродвигатели, работающие на постоянном или переменном токе. Конструктивно преобразователи частоты, сервоприводы и устройства главного пуска и реверса являются отдельными электронными блоками управления.

Привод подачи для станков с ЧПУ. В качестве привода используют двигатели, представляющие собой управляемые от цифровых преобразователей синхронные или асинхронные машины.

Бесколлекторные синхронные (вентильные) двигатели для станков с ЧПУ изготавливают с постоянным магнитом на основе редкоземельных элементов и оснащают датчиками обратной связи и тормозами. Ассинхронные двигатели применяют реже, чем синхронные.

Привод движения подач характеризуется минимально возможными зазорами, малым временем разгона и торможения, небольшими силами трения, уменьшенным нагревом элементов привода, большим диапазоном регулирования.

Обеспечение этих характеристик возможно благодаря применению шариковых и гидростатических винтовых передач, направляющих качения и гидростатических направляющих, беззазорных редукторов с короткими кинематическими цепями и т.д.

Приводами главного движения для станков с ЧПУ обычно являются двигатели переменного тока — для больших мощностей и постоянного тока — для малых мощностей.

В качестве приводов служат трехфазные четырехполосные асинхронные двигатели, воспринимающие большие перегрузки и работающие при наличии в воздухе металлической пыли, стружки, масла и т.д. Поэтому в их конструкции предусмотрен внешний вентилятор.

В двигатель встраивают различные датчики, например датчик положения шпинделя, что необходимо для ориентации или обеспечения независимой координаты.

Преобразователи частоты для управления асинхронными двигателями имеют диапазон регулирования до 250. Преобразователи представляют собой электронные устройства , построенные на базе микропроцессорной техники.

Программирование и параметрирование их работы осуществляются от встроенных программаторов с цифровым или графическим дисплеем. Оптимизация управления достигается автоматически после введения параметров электродвигателя.

В математическом обеспечении заложена возможность настройки привода и пуск его в эксплуатацию.

Шпиндели станков с ЧПУ выполняет точными, жесткими, с повышенной износостойкостью шеек, посадочных и базирующих поверхностей. Конструкция шпинделя значительно усложняется из-за встроенных в него устройств автоматического режима и зажима инструмента, датчиков при адаптивном управлении и автоматической диагностике.

Опоры шпинделя должны обеспечить точность шпинделя в течение длительного времени в переменных условиях работы, повышенную жесткость, небольшие температурные деформации. Точность вращения шпинделя обеспечивается прежде всего высокой точностью изготовления подшипников.

Наиболее часто в опорах шпинделей применяют подшипники качения. Для уменьшения влияния зазоров и повышения жесткости опор обычно устанавливают подшипники с предварительным натягом или увеличивают число тел качения.

Подшипники скольжения в оправках шпинделей применяют реже и только при наличии устройств с периодическим (ручным) или автоматическим регулированием зазора в осевом или радиальном направлении.

В прецизионных станках применяют аэростатические подшипники, в которых между шейкой вала и поверхностью подшипника находится сжатый воздух, благодаря этому снижается износ и нагрев подшипника, повышается точность вращения и т.п.

Привод позиционирования (т.е. перемещение рабочего органа станка в требуемую позицию согласно программе) должен иметь высокую жесткость и обеспечивать плавность перемещения при малых скоростях, большую скорость вспомогательных перемещений рабочих органов (до 10 м/мин и более).

Вспомогательные механизмы станков с ЧПУ включают в себя устройства смены инструмента, уборки стружки, систему смазывания, зажимные приспособления, загрузочные устройства и т.д. Эта группа механизмов в станках с ЧПУ значительно отличается от аналогических механизмов, используемых в обычных универсальных станках.

Например, в результате повышения производительности станков с ЧПУ произошло резкое увеличение количества сходящей стружки в единицу времени, а отсюда возникла необходимость создания специальных устройств для отвода стружки.

Для сокращения потерь времени при загрузке применяют приспособления, позволяющие одновременно устанавливать заготовку и снимать деталь вовремя обработки другой заготовки.

Устройства автоматической смены инструмента (магазины, автооператоры, револьверные головки) должны обеспечивать минимальные затраты времени на смену инструмента, высокую надежность в работе, стабильность положения инструмента, т.е. постоянство размера вылета и положения оси при повторных сменах инструмента, имеют необходимую вместимость магазина или револьверные головки.

Револьверная головка-это наиболее простое устройство смены инструмента: установку и зажим инструмента осуществляют вручную. В рабочей позиции один из шпинделей приводится во вращение от главного привода станка. Револьверные головки устанавливают на токарные, сверлильные, фрезерные, многоцелевые станки с ЧПУ; в головке закрепляют от 4 до 12 инструментов.

Многоцелевые станки с ЧПУ

Благодаря оснащению многоцелевых станков (МС) устройствами ЧПУ и автоматической смены инструмента существенно сокращается вспомогательное время при обработке и повышается мобильность переналадки.

Сокращение вспомогательного времени достигается благодаря автоматическим установке инструмента (заготовки) по координатам, выполнению всех элементов цикла, смене инструментов, кантованию и смене заготовки, изменению режимов резания, выполнению контрольных операций, а также большим скоростям вспомогательных перемещений.

По назначению МС делятся на две группы: для обработки заготовок корпусных и плоских деталей и для обработки заготовок деталей типа тел вращения. В первом случае для обработки используют МСсверлильно-фрезерно-расточной группы, а во втором-токарной и шлифовальной групп. Рассмотрим МСпервой группы, как наиболее часто используемые.

МС имеют следующие характерные особенности: наличие инструментального магазина, обеспечивающего оснащенность большим числом режущих инструментов для высокой концентрации операций (черновых, получистовых и чистовых), в том числе точения, растачивания. фрезерования, сверления, зенкерования, развертывания, нарезания резьбы, контроля качества обработки и др.; высокая точность выполнения чистовых операций (6…7-й квалитеты).

Для систем управленияМС характерны сигнализация, цифровая индикация положения узлов станка, различные формы адаптивного управления. МС-это в основном одношпиндельные станки с револьверными и шпиндельными головками.

Многоцелевые станки (обрабатывающие центры) для обработки заготовок корпусных деталей. МС для обработки заготовок корпусных деталей подразделяют на горизонтальные (рис.2 ) и вертикальные(рис.58).

Обработка заготовок на МС по сравнению с их обработкой на фрезерных, сверлильных и других станках с ЧПУ имеет ряд особенностей. Установка и крепление заготовки должны обеспечивать ее обработку со всех сторон за одну установку (свободный доступ инструментов к обрабатываемым поверхностям), так как только в этом случае возможна многосторонняя обработка без переустановки.

Обработка на МС не требует, как правило, специальной оснастки, так как крепление заготовки осуществляется с помощью упоров и прихватов. МС снабжены магазином инструментов, помещенных на шпиндельной головке, рядом со станком или в другом месте.

Для фрезерования плоскостей используют фрезы небольшого диаметра и обработку производят строчками. Консольный инструмент, применяемый для обработки неглубоких отверстий, имеет повышенную жесткость и, следовательно, обеспечивает заданную точность обработки.

Отверстия, лежащие на одной оси, но расположенные в параллельных стенках заготовки, растачивают с двух сторон, поворачивая для этого стол с заготовкой.

Если заготовки корпусных деталей имеют группы одинаковых поверхностей и отверстий, то для упрощения составления технологического процесса и программы их изготовления, а также повышения производительности обработки (в результате сокращения вспомогательного времени) в память УЧПУ станка вводят постоянные циклы наиболее часто повторяющихся движений (при сверлении, фрезеровании). В этом случае программируется только цикл обработки первого отверстия (поверхности), а для остальных — задаются лишь координаты (X и Y) их расположения.

В качестве примера на рис.3 показаны некоторые постоянные технологические циклы, включенные в программное обеспечение и используемые при обработке на станке модели ИР320ПМФ4.

Устройство для автоматической смены приспособления-спутника (ПС) на станке модели ИР500МФ4 показано на рис.4. ПС 11 устанавливают на платформу 7 (вместимостью два ПС), на которой смонтированы гидроцилиндры 10 и 13. Штоки гидроцилиндров имеют Т-образные захваты 14 и 6.

При установке на платформу (перемещение по стрелке Б) ПС вырезом 12 входит в зацепление с захватом 14 штока. На платформе ПС базируется на роликах 9 и центрируется (по боковым сторонам) роликам 8 (исходное положение ПС в позиции ожидания).

Перемещение штока гидроцилиндра 10 обуславливает качение (по роликам) спутника. При движении штока гидроцилиндра 13 захват 6 перемещается (по направляющей штанге) и катит ПС по роликам 9 и 8 (в направлении стрелки А) на поворотный стол станка, где спутник автоматически опускается на фиксаторы.

В результате захват 6 выходит из зацепления с ПС и стол станка (с закрепленным на нем спутником) на быстром ходу перемещается в зону обработки.

Заготовку закрепляют на спутнике во время обработки предыдущей заготовки (когда ПС находится в позиции ожидания) или заранее, вне станка.

После того как заготовка будет обработана, стол станка автоматически (на быстром ходу) передвигается вправо к устройству для смены спутника и останавливается в таком положении, при котором фигурный паз ПС оказывается под захватом 6.

Гидроцилиндр поворотного стола расфиксирует спутник, после чего ПС входит в зацепление с захватом 6, а масло поступает в штоковую полость гидроцилиндра 13, шток смещается в крайнее правое положение и перемещает спутник с заготовкой на платформу 7, где уже находится ПС с новой заготовкой.

Чтобы поменять спутник местами, платформа поворачивается на 180° (на стойке 15) зубчатым колесом 3, сопряженным с рейкой 4, приводимой в движение гидроцилиндрами 5 и 16. Платформу 7 точно выверяют относительно поворотного стола станка с помощью регулировочных винтов 2 и 17, ввернутых в выступы базовой плиты 1, неподвижно закрепленной на фундаменте.



Источник: https://infopedia.su/8×7301.html

Cтанки с числовым программным управлением (ЧПУ)

Cтанки с числовым программным управлением — современное прогрессивное металлорежущее оборудование автоматически, с высокой производительностью и точностью обрабатывает (точением, сверлением, фрезерованием, шлифованием) различные детали, в том числе сложные корпусные.

На таком оборудовании автоматически и бесступеичато меняются частоты вращения, шпинделей и скорости подач суппортов, столов и других механизмов, которые также автоматически устанавливаются в заданных положениях и закрепляются.

Смена режущего инструмента, предварительно настроенного, также происходит автоматически.

Однако на ряде моделей станков с ЧПУ режущий инструмент меняет оператор.

Понятие о программном управлении

При автоматическом управлении станком команды в необходимой последовательности задают программоносителем. Программоносителями могут служить кулачки, копиры, упоры и т. д., по командам которых работают автоматы, полуавтоматы, копировальные станки и др. При смене объекта производства заменяют кулачки, копиры и другие элементы новыми.

Читайте также:  Изучаем станки для резки и пилки кирпича: характеристики, обзоры и сравнение

В станках с программным управлением применяют программоносители в виде перфокарт, перфолент, магнитных лент, содержащие информацию. Такие программоносители позволяют автоматизировать процесс подготовки программ с меньшими затратами.

На программоносителе может быть представлена геометрическая и технологическая информации.

Технологическая информация содержит данные о последовательности ввода в работу различных инструментов, изменение режимов резания, включение и переключение частот вращения шпинделя и др.

Геометрическая информация характеризует форму, размеры элементов изделия и инструмента и их взаимное положение в пространстве.

По виду управления станки с программным управлением (ПУ) делят на станки с системами циклового программного управления (ЦПУ) и станки с системами числового программного управления (ЧПУ).

в станках с ЧПУ в программоноситель вводят только технологическую информацию, а размерная настройка обеспечивается на станке упорами.

В станках с ЧПУ управление осуществляется от программоносителя, на который закодированы как технологические, так и размерные информации.

Применение станков с ЧПУ позволяет высвободить большое число универсального оборудования и обеспечить высокую производительность труда.

Однако поддержание этих станков в работоспособном состоянии требует высокой квалификации слесарей-ремонтников, электроников и электриков.

Конструктивные особенности станков с ЧПУ

Известно, что квалифицированный рабочий, хорошо знающий свой станок, может изготовлять на нем высококачественные детали, даже если станок изношен и не соответствует техническим условиям. С другой стороны, малоквалифицированный станочник не всегда умеет обеспечить обработку заготовок с необходимой точностью на хорошем станке.

При работе на универсальном оборудовании рабочий, являясь одним из звеньев системы управления, обеспечивает необходимую точность обработки, учитывая и корректируя возникающие отклонения. Станки с ЧПУ предназначены для универсального использования без участия рабочего. Поэтому к ним предъявляется ряд повышенных требований.

С целью повышения жесткости и точности станины, стойки, столы и другие базовые сборочные единицы изготовляют с дополнительными ребрами жесткости, а приводы главного движения и подач выполняют с кинематической цепью минимальной длины с беззазорными зубчатыми (рис. 122—124) и шарико-винтовыми передачами.

Последние в сочетании с напрвляющими качения исполнительных механизмов (столов, суппортов и др.) обеспечивают высокую динамическую жесткость, плавность перемещения и стабильность параметров при самых низких скоростях.

В приводах главного движения, механизмах подач для смены инструментов широко используются электромагнитные муфты, позволяющие автоматически переключать скорости, четко переключать передачи, осуществлять реверсирование и торможение.

Шпиндельные механизмы делают более жесткими за счет увеличения диаметров и усиления опор главным образом подшипниками качения с предварительным натягом. Эти конструкции усложняют еще и тем, что в них встраивают устройства для автоматического зажима и отжима инструментов.

Для точности позиционирования широко используются шаговые электродвигатели в сочетании с гидроусилителями моментов. Передачи в станках с системой ЧПУ выполняются как беззазорные, в том числе и зубчатые, передающие движение исполнительным механизмам.

Беззазорность в зубчатых зацеплениях достигается различными способами, ниже представлены некоторые из них. На рис. 122 показана беззазорная зубчатая передача.

Это достигается радиальным сближением прямозубых зубчатых колес (изменением межосевого расстояния А между валами). Для этого осуществляют разворот эксцентриковой втулки 2 с валом 3.

При этом обеспечивают умеренно плотное сцепление, при котором люфт между зубьями почти не ощутим.

На рис. 123 показана передача, у которой уменьшение люфта между цилиндрическими зубчатыми колесами 1,2 w 3 осуществляется разворотом колес 2 и 3 одного вала. Колесо 3 посажено на ступице колеса 2 (которое соединено с валом шпонкой 6) и скреплено с ним винтами 5.

При этом каждое из колес 2 w3 работает одним противоположным профилем. Уменьшение зазора в зацеплении производится посредством эксцентрика.
На рис.

124 показана беззазорная зубчатая передача со сдвоенными косозубыми колесами 5 и 7 с промежуточными полукольцами 2 и 6, соединенными винтами 4 и штифтами 3. Колесо 7 посажено на ступице колеса 5 по скользящей посадке и удерживается от разворота штифтами.

Устранение зазора в этом зубчатом зацеплении осуществляют осевым сдвигом колеса 7 относительно колеса 5, при котором каждый из зубчатых венцов будет контактировать противоположным 8 м 9 (рис. 124) профилем с широким зубчатым колесом 1.

Чтобы устранить зазор, ослабляют винты, вынимают полукольца 2 и 6 и затем винтами 4 регулируют сцепление так, чтобы не было ощущение люфта при изменении направления вращения передачи.

Далее щупом замеряют расстояние между внутренними торцами колес 5 и 7 с точностью 0,01 мм и по среднему значению трех замеров на разных участках шлифуют полукольца, которые устанавливают на место и закрепляют винты 4.

Большие эксплуатационные преимущества направляющих качения по точности, жесткости, долговечности, низкому коэффициенту трения, и в частности роликовых опор с циркулирующими роликами (танкетки), обусловливают все большее их применение на современных станках, в том числе с ЧПУ.

Танкетки изготовляют разных типов и размеров, одна из них представлена на рис. 125. Она состоит из двух обойм, комплекта роликов 6, двух сепараторов 5, крепежных винтов 5, штифтов 7, 5 и направляющей 4.

Роликовые опоры, набитые смазкой ЦИАТИМ-201, монтируют на специальных платформах (монтажные подушки) в количестве одной — трех штук в зависимости от нагрузки и длины хода. Обоймы танкеток скрепляют с платформой 2 винтами 5, при этом добиваются, чтобы токарный станок с числовым программным управлением 16К20ФЗС4.

Станок 16К20ФЗС4 предназначен для обработки в полуавтоматическом цикле наружных и внутренних поверхностей и деталей типа тел вращения со ступенчатым и криволинейным профилем самой различной сложности, а также для нарезания резьбы.

Основание станка — монолитная отливка, на которой установлена станина. В левой нише основания размещена моторная установка, на задней части основание крепится автоматическая коробка скоростей (рис. 126).

Средняя часть основания служит сборником для стружки и охлаждающей жидкости.

Станина 17 (рис. 126) коробчатой формы, с поперечными ребрами П-образиого профиля. Для перемещения каретки суппорта (под Передвижным щитком) служит неравнобокая призматическая, передняя и плоская задняя каленые направляющие. На правой части станины крепится привод продольной подачи.

Привод главного движения включает электродвигатель, автоматическую девятискоростную коробку скоростей 3, переднюю бабку 16 (рис. 127), соединенные клиноременными передачами.

В шпиндельной бабке предусмотрено переключение вручную рукояткой 2 (см. рис.

126) трех диапазонов скоростей, что вместе с девятьюскоростной коробкой скоростей обеспечивает получение частот вращения шпинделя от 12,5 до 2000 об/мин.

Привод поперечной подачи монтируется на задней стороне каретки суппорта и включает шаговый двигатель с гидроусилителем, одноступенчатый редуктор и передачу винт — гайка качения.

Суппорт и каретка — традиционного типа, отличаются увеличенной высотой каретки суппорта для повышения жесткости и возможности установки шарикового винта поперечной подачи диаметром 40 мм.

Поворотная резцедержавка 4 (см. рис. 126) — шестипознционная (с горизонтальной осью вращения), в которой устанавливается шесть резцов-вставок (инструментальных блоков), предварительно настроенных на заданные размеры вне станка.

Гидрооборудование станка включает гидростанцию с резервуаром для масла емкостью 100 л, регулируемым насосом, приводным электродвигателем и элементами фильтрации и охлаждения, гидроусилителями моментов продольного и поперечного ходов суппорта, магистральными трубопроводами, соединяющими сборочные единицы станка и аппаратуры.

Система ЧПУ обеспечивает перемещение суппорта по двум координатам, автоматическое переключение девяти скоростей шпинделя, индексацию шестипозиционного резцедержателя с автоматическим поиском требуемой позиции, а также выполнение ряда вспомогательных команд. Работа гидропривода происходит в соответствии с подачей электрических команд от системы управления (ЧПУ) к шаговым двигателям.

При отработке шаговым электродвигателем (ШД) (рис.

128) какого-то числа электрических импульсов происходит поворот через муфту 7 входного вала и смещение посредством резьбового соединения 3 следящего золотника 2 гидроусилителя на соответствующую величину.

Масло под давлением через щели следящего золотника и распределительного диска 4 воздействует на поршни 5 ротора гидроусилителя, который поворачивает выходной вал 6 пропорционально величине открытия щелей.

За счет энергии масла, подводимого к гидроусилителю, электрические сигналы малой мощности, поступающие на вход шагового электродвигателя, многократно усиливаются н преобразуются в синхронные (по отношению к валу шагового двигателя), вращение выходного вала гидроусилителя происходит с крутящим моментом, необходимым для перемещения рабочих (исполнительных) органов. При этом величина угла поворота выходного вала гидроусилителя определяется числом поданных импульсов, а скорость — частотой их следования. На данном станке каждый импульс обеспечивает линейные перемещения суппорта на 0,01 мм, а число импульсов составляет до 1000 в минуту, благодаря которым создаются различные скорости подач.

Техническое обслуживание и ремонт

Большая часть отказов присуща станку 16К20ФЗС4. Поэтому ниже приведены только некоторые технологические процессы регулировок, осуществляемых при техническом обслуживании, относящиеся только к этому станку с ЧПУ.

Регулировка натяжения ремней (см. рис. 127) привода главного движения осуществляется следующим образом:

  1. Натяжение ремней, идущих от шкива автомапической коробки скоростей (АКС) 3 к шкиву передней бабки 16, регулируют смещением АКС по горизонтальной поверхности кронштейна 7. Для этого предварительно ослабляют гайки 6, регулируют натяжение винтом 4 и затем закрепляют гайки.
  2. Натяжение ремней 9, передающих вращателыюе движение от электродвигателя к АКС, осуществляют смещением подмоторной плиты по вертикали гайкой 5, предварительно ослабив и затем закрепив болты 10 и 14. Натяжение peмнeй 9 в зависимости от натяжения ремней можно регулировать вертикальным перемещением кронштейна 7 вместе с АКС. Для этого ослабляют гайки 8, регулируют наряжения ремней винтом 2 и закрепляют ослабленные гайки.
  3. Натяжение ремня 13 (от электродвигателя к смазочной станции) производят смещением плиты 15 при помощи рычага (на рисунке не показан). Для этого ослабляют болты 12 и 14, смещают станцию и закрепляют.

Техническое обслуживание передач винт — гайка качения ВГК

Долговременная эксплуатация передач ВГК, обеспечивается высококачественрюй смазкой. Обязательным требованием к смазке является чистота (отсутствие посторонних частиц) и высокие антикоррозионные свойства.

Для смазки передач ВГК пользуются консистентной смазкой ЦИАТИМ-201. Передача должна быть защищена от попадания абразивной пыли, стружки и эмульсии.

Регулировкой натяга создают оптимальную жесткость и соответствующий ей расчетный крутящий момент холостого хода.

При недостаточном натяге появляются недопустимые люфты, нарушается плавность перемещения сборочных единиц станка и снижается точность обработки изделий.
Станки с ЧПУ, имеющие замкнутую систему управления, т. е.

датчики обратной связи, при появлении зазора могут останавливаться или движение их сборочных единиц будет прерывистым.

Чрезмерный натяг приводит к защемлению тел качения, в результате чего появляются излишние напряжения в передаче, увеличиваются необходимые усилия на перемещение механизмов, повышается нагрев, не обеспечивается заданная скорость подачи, станки «захлебываются» — возможна остановка.

При проведении технического обслуживания и планового ремонта станка необходимо каждый раз безошибочно анализировать работу шариковинтового механизма. Для этого выявляют и измеряют «мертвый ход» привода всех механизмов (привода стола, каретки, суппорта, шпиндельной бабки и др.).

Суммарный «мертвый ход» является следствием накопления зазоров в механизмах привода (зубчатые и винтовые передачи, шпоночные и шлицевые соединения).

Суммарный «мертвый ход» отсчитывают по индикатору, установленному так, чтобы ось индикатора, проходящая вдоль измерительной иглы, совпадала с направлением предполагаемого перемещения конечного звена привода (стола, каретки, суппорта и др.).

После установки индикатора подают определенное число импульсов (10—15) от пульта управления станка, затем переключают направление подачи на противоположное и после подачи аналогичного числа импульсов определяют величину, на которую стрелка индикатора не вернулась на нулевую отметку.

Суммарный «мертвый ход» регламентирован и должен соответствовать величине, указанной в руководстве по эксплуатации или в акте технической приемки — станка. Замер «мертвого хода» необходим для выявления целесообразности проведения регулировки передачи ВГК. Для регулировки передач осуществляют частичную разборку станка с целью доступа к нужному механизму.

Выборка зазора и регулировка натяга в паре ВГК поперечного перемещения суппорта (рис. 129) производится поворотом полу-гайки 4 относительно полугайки 2 с помощью шестерни 5 (на внутреннем венце 73 зуба, на наружном — 72).

Поворот шестерни 5 на один зуб относительно полугайки 4 приводит к осевому смещению на 1 мкм. Гайка защищена уплотнениями 6, поддерживаемыми крышкой и шестерней 5.

Регулировку натяга осуществлять в таком порядке:

  1. отвернуть винты и снять крышку 7;
  2. вывести шестерню 5 из зацепления с полугайкой 4 и корпусом 3;
  3. повернуть шестерню 5 относительно корпуса 3 и полугайки 4 на необходимое число зубьев и ввести в зацепление только с полугайкой 4;
  4. довернуть шестерню 5, а с ней и полугайку 4 до того момента, пока наружный венец шестерни 5 не будет иметь возможность войти в зацепление с венцом корпуса 3;
  5. после окончательной регулировки натяга надеть крышку 7 и притянуть винтами;
  6. проверить динамометром момент холостого хода, который должен быть 8 кгс/см.

Источник: http://chiefengineer.ru/stanki/stanki-s-chpu/ctanki-s-chislovym-programmnym-upravleniem/

Ссылка на основную публикацию